Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :
\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)
Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:
Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)
\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)
Thôi,đi vào giải quyết bài toán.
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)
Khi đó BĐT tương đương với:
\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)
Ta cần chứng minh:
\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)
\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\)
Hình như cái BĐT cuối đúng thì phải ạ.
Dấu "=" xảy ra tại a=b=c=1
a) Ta có: \(\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)=\left(4-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)-\left(x-4\right)\right]-2\left(3x-2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3-x+4\right)-6x+4=0\)
\(\Leftrightarrow x-4-6x+4=0\)
\(\Leftrightarrow-5x=0\)
mà -5<0
nên x=0
Vậy: x=0
Áp dụng BĐT AM-GM dạng mẫu số được
\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\)
Ta có : \(a^2+b^2+c^2\ge ab+bc+ac\) (dễ dàng chứng minh được)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ac\ge2\left(ab+bc+ac\right)\) và \(\left(a^2+b^2+c^2\right)^2\ge\left(ab+bc+ac\right)^2\)
Do vậy \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(ab+bc+ac\right)}\ge\frac{\left(ab+bc+ac\right)^2}{2\left(ab+bc+ac\right)}=\frac{ab+bc+ac}{2}\)
Dấu "=" xảy ra khi a = b = c > 0
Cộng vế với vế giả thiết:
\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)
\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)
\(\Rightarrow P=1+1+1=3\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Ta có:
\(A=\frac{\left(1^4+4\right)\left(2^4+4\right)...\left(2021^4+4\right)}{2}\)
\(=\frac{\left(1^4+4\right)\left(2^4+4\right)}{2}\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\)
\(=5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\)
Đặt \(2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)=c\)
Từ công thức: \(a^x\cdot b^x=\left(ab\right)^x\left(a,b,x\inℤ\right)\Rightarrow a^2\cdot b^2=\left(ab\right)^2\)
\(\Rightarrow\)Nếu \(c\) là số chính phương thì \(5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\) là số chính phương.
Có thể thấy các thừa số của tích \(c\) mà có dạng \(\left(2d\right)^4+4\left(d\inℕ\right)\) thì chia hết cho \(2^2\).
Phân tích các thừa số của tích \(c\) ra thừa số nguyên tố. Ta có:
\(c=2\cdot\left(...\right)\left(2^2\cdot5\cdot13\right)\left(...\right)\left(2^2\cdot5^2\cdot13\right)...\left(2020^4+4=2^2\cdot...\right)\left(2021^4+4=...\cdot...\right)\)
Gộp các thừa số \(2^2\) lại thành tích ta có:
\(c=\left(2^2\right)^{\frac{\left(2021-3+1\right)-1}{2}}\cdot2\cdot e\)
\(=\left(2^2\right)^{1009}\cdot2\cdot e\)
\(=\left(2^{1009}\right)^2\cdot2\cdot e\) (trong đó ký hiệu \(e\) là tích của các thừa số nguyên tố còn lại trong dãy \(\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\) sau khi 1009 thừa số \(2^2\) bị tách ra.
Có thể thấy tích \(e\) gồm các thừa số nguyên tố lớn hơn 2\(\Rightarrow2e\) không thể là số chính phương.
\(\Rightarrow\left(2^{1009}\right)^2\cdot2\cdot e\) không phải là số chính phương\(\Rightarrow c\) không phải là số chính phương.
\(\Rightarrow A\) không phải là số chính phương (đpcm).