Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
Lời giải:
TH1: $n$ chẵn
Theo hằng đẳng thức đáng nhớ, với $2015$ lẻ và 2 số $a,b$ nguyên dương bất kỳ thì thì:\(a^{2015}+b^{2015}\vdots a+b\)
Áp dụng vào bài toán:
\(1^{2015}+n^{2015}\vdots n+1\)
\(2^{2015}+(n-1)^{2015}\vdots n+1\)
....
\(\left(\frac{n}{2}\right)^{2015}+\left(\frac{n}{2}+1\right)^{2015}\vdots n+1\)
\(\Rightarrow 1^{2015}+2^{2015}+...+n^{2015}\vdots n+1\)
\(\Rightarrow A=2(1^{2015}+2^{2015}+...+n^{2015})\vdots n+1\)
------------
Mặt khác, ta cũng có:
\(2[1^{2015}+(n-1)^{2015}]\vdots n\)
\([2^{2015}+(n-2)^{2015}]\vdots n\)
......
\(2\left(\frac{n}{2}\right)^{2015}=2\left(\frac{2k}{2}\right)^{2015}=2k^{2015}=\vdots (2k=n)\)
\(\Rightarrow 2(1^{2015}+2^{2015}+...+(n-1)^{2015})\vdots n\)
\(\Rightarrow A=2(1^{2015}+2^{2015}+...+(n-1)^{2015}+n^{2015})\vdots n\)
Vậy $A\vdots n$ và $A\vdots (n+1)$. Mà $(n,n+1)=1$ nên $A\vdots n(n+1)$
TH2: $n$ lẻ
Hoàn toàn tương tự, ghép cặp hợp lý ta cũng thu được $A\vdots n(n+1)$
Vậy ta có đpcm.
\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7
=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.
sao từ a-b chia hết cho 7 lại suy r dc (a-b)(a+b) cũng thế v bn
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.
\(a^2+b^2+ab\) chia hết cho 10
=> \(a^2+b^2+ab\) chia hết cho 2 và 5
\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)
\(=\left(a+b\right)^2-ab\)
Vì \(\left(a+b\right)^2;ab\) chia hết cho 2
=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ
(+) Nếu \(\left(a+b\right)^2;ab\) (1)
=> a và b cùng lẻ
=> a+b chẵn ( mâu thuẫn với (1) )
=> a và b cùng là số chẵn
Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10
Mình chỉ biết đến đó
Mà cũng ko chắc là đúng