K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Ta có (a1 + a2 + ...+a2016)3 = 20166051

<=> a13 + a23 +...+ a20163 + 3A = 20166051

Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a2016chia hết cho 3

9 tháng 6 2017

ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.

ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.

ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.

do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.

7 tháng 5 2016

B KO PHẢI SỐ TỰ NHIÊN

TÍCH NHA MIK CHO LỜI GIẢI

7 tháng 5 2016

hiển nhiên B > 0, nên cm B < 1

4 tháng 10 2017

Đặt \(B=a_1+a_2+...+a_{2016}\)

\(\Rightarrow A-B=\left(a_1^3+a_2^3+...+a_{2016}^3\right)-\left(a_1+a_2+....+a_{2016}\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2016}^3-a_{2016}\right)\)

\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_{2016}-1\right)a_{2016}\left(a_{2016}+1\right)⋮6\)

\(B⋮6\Rightarrow A⋮6\)

14 tháng 6 2016

Bài 2:

Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

(bình phương vài lần + biến đổi tương đương)

\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)

\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)

15 tháng 6 2016

cau 1 su dung bdt tre bu sep la ra

8 tháng 10 2018

Ta có : 

\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)

\(\left(2\sqrt{2016}\right)^2=8064\)

Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)

Vậy... 

Chúc bạn học tốt ~ 

8 tháng 10 2018

Cảm ơn bn nhiều nhé :)))