Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=2-2^2+2^3-...-2^{30}+2^{31}\\ \Leftrightarrow2A+A=2-2^2+2^3-...-2^{30}+2^{31}+1-2+2^2-...-2^{29}+2^{30}\\ \Leftrightarrow3A=2^{31}+1\\ \Leftrightarrow A=\dfrac{2^{31}+1}{2}\)
Bài 4:Nhìn rối quá,chưa hiểu
Bài 5:Bỏ dấu ngoặc rồi tính
1) ( 17 – 229) + ( 17 - 25 + 229)
=17-229+17-25+229
=17+17-229+229-25
=34-25=9
2)(125 – 679 + 145) – (125 – 679 )
=125-679+145-125+679
=125-(-125)+(-679)+679+145
=145
3)(3567 – 214) – 3567
=3567-214-3567
=-214
4)(- 2017) – ( 28 – 2017)
=-2017-28+2017
=-2017+2017-28
=-28
5) -( 269 – 357 ) + ( 269 – 357 )
=-269+357+269-357
=0
6) (123 + 345) + (456 – 123) – (45 – 144)
=123+345+456-123-45+144
=123-123+345+456-45+144
=0+345+456-45+144
=900 cái này mik tính gộp nha.Còn bn muốn tách thì tách nha
Bài 6*. Tìm số nguyên n để:
1) n + 3⋮ n + 1
Ta có: n + 3⋮ n + 1
⇔n+3=(n+1)+2
⇔(n+1)+2⋮n+1
⇔2⋮n+1
⇔n+1∈Ư(2)={-2;-1;1;2}
Ta có bảng sau
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
Vậy n=-3;-2;0;1
2) 2n + 1⋮ n – 2
Ta có: 2n + 1⋮ n – 2
⇔2n+1=2n+0+1
⇔n+1∈Ư(1)={-1;1}
Ta có bảng sau:
n+1 | -1 | 1 |
n | -2 | 0 |
Vậy n=-2;0
3) (n - 2).(n + 3) < 0
Vì (n - 2).(n + 3) < 0
⇔n-2=n+3-1
⇔(n+3)-1.(n+3)<0
⇔1.n+3<0
⇔n+3∈Ư(1)={-1:1}
Ta có bảng sau:
n+3 | -1 | 1 |
n | -4 | -2 |
Vậy n là -4;-2
------Còn nữa------
P/s:Tại hơi mỏi tay
#Học tốt
Bn ơi,mai mốt bn chia ra từng câu cho dễ thấy nha,như vậy mấy bn khác đọc k ra sẽ k giúp bn đc
\(S=1+2+2^2+2^3+...+2^{29}\)
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\)
\(S=7+2^3.\left(1+2+2^2\right)+...+2^{27}.\left(1+2+2^2\right)\)
\(S=7+2^3.7+...+2^{27}.7\)
\(S=7.\left(1+2^3+...+2^{27}\right)\)
Vì \(7⋮7\) nên \(7.\left(1+2^3+...+2^{27}\right)⋮7\)
Vậy \(S⋮7\)
______
\(2^{x+1}+2^x.3=320\)
\(=>2^x.2+2^x.3=320\)
\(=>2^x.\left(2+3\right)=320\)
\(=>2^x.5=320\)
\(=>2^x=320:5\)
\(=>2^x=64=2^6\)
\(=>x=6\)
\(#NqHahh\)
\(#Nulc`\)
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
a, A = 1 + 3 + 32 + 33 + ... + 32000
3.A = 3 + 32 + 33+ 33+... + 32001
3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)
2A = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - 33 - ... - 32000
2A = 32001 - 1
A = \(\dfrac{3^{2001}-1}{2}\)
a: \(61\cdot45+61\cdot23-68\cdot51\)
\(=61\left(45+23\right)-68\cdot51\)
\(=68\cdot61-68\cdot51\)
\(=68\left(61-51\right)=68\cdot10=680\)
b: \(3\cdot5^2-\left(75-4\cdot2^3\right)\)
\(=75-75+4\cdot8\)
\(=4\cdot8=32\)
c: \(36:\left\{2^2\cdot5-\left[30-\left(5-1\right)^2\right]\right\}\)
\(=\dfrac{36}{20-30+4^2}\)
\(=\dfrac{36}{-10+16}=\dfrac{36}{6}=6\)
d: \(\left(12\cdot49-3\cdot2^2\cdot7^2\right):\left(2020\cdot2021\right)\)
\(=\dfrac{\left(12\cdot49-12\cdot49\right)}{2020\cdot2021}=0\)
a. = 23 . (55-45) + 230
= 23 . 10 +230
= 230 + 230
= 460
b. = 71 . (66 - 41 - 1)
= 71 . 24
= 1704
c. = 50 . (11 + 22) - 100
= 50 . 33 - 100
= 1650 - 100
= 1550
d. = 27. (54 - 50) + 50
= 27 . 4 + 50
= 108 + 50
= 158
a) 23.55-45.23+230
=23.(55-45)+230
=23.10+230
=230+230
=460
b) 71.66-41.71-71
=71.(66-41-1)
=71.24
=1704
c) 11.50+50.22-100
=50.(11+22)-100
=50.33-100
=1550
d) 54.27-27.50+50
=27.(54-50)+50
=27.4+50
=108+50
=158
# Bé_Bông #
Lời giải:
$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$
$=3+2^2(1+2)+....+2^{2020}(1+2)$
$=3+3.2^2+....+3.2^{2020}$
$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.
A= (2+1) + (22 +23+ ...+ 229+230)
A=3 + (22+23 +...+229+230) chia hết co 3
vì 3chia hết 3