K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

A= (2+1) + (2+23+ ...+ 229+230)

A=3 + (22+2+...+229+230) chia hết co 3

vì 3chia hết 3

15 tháng 12 2021

\(2A=2-2^2+2^3-...-2^{30}+2^{31}\\ \Leftrightarrow2A+A=2-2^2+2^3-...-2^{30}+2^{31}+1-2+2^2-...-2^{29}+2^{30}\\ \Leftrightarrow3A=2^{31}+1\\ \Leftrightarrow A=\dfrac{2^{31}+1}{2}\)

20 tháng 3 2020

Bài 4:Nhìn rối quá,chưa hiểu

Bài 5:Bỏ dấu ngoặc rồi tính

1) ( 17 – 229) + ( 17 - 25 + 229)

=17-229+17-25+229

=17+17-229+229-25

=34-25=9

2)(125 – 679 + 145) – (125 – 679 )

=125-679+145-125+679

=125-(-125)+(-679)+679+145

=145

3)(3567 – 214) – 3567

=3567-214-3567

=-214

4)(- 2017) – ( 28 – 2017)

=-2017-28+2017

=-2017+2017-28

=-28

5) -( 269 – 357 ) + ( 269 – 357 )

=-269+357+269-357

=0

6) (123 + 345) + (456 – 123) – (45 – 144)

=123+345+456-123-45+144

=123-123+345+456-45+144

=0+345+456-45+144

=900 cái này mik tính gộp nha.Còn bn muốn tách thì tách nha

Bài 6*. Tìm số nguyên n để:

1) n + 3⋮ n + 1

Ta có: n + 3⋮ n + 1

⇔n+3=(n+1)+2

⇔(n+1)+2⋮n+1

⇔2⋮n+1

⇔n+1∈Ư(2)={-2;-1;1;2}

Ta có bảng sau

n+1 -2 -1 1 2
n -3 -2 0 1

Vậy n=-3;-2;0;1

2) 2n + 1⋮ n – 2

Ta có: 2n + 1⋮ n – 2

⇔2n+1=2n+0+1

⇔n+1∈Ư(1)={-1;1}

Ta có bảng sau:

n+1 -1 1
n -2 0

Vậy n=-2;0

3) (n - 2).(n + 3) < 0

Vì (n - 2).(n + 3) < 0

⇔n-2=n+3-1

⇔(n+3)-1.(n+3)<0

⇔1.n+3<0

⇔n+3∈Ư(1)={-1:1}

Ta có bảng sau:

n+3 -1 1
n -4 -2

Vậy n là -4;-2

------Còn nữa------

P/s:Tại hơi mỏi tay

#Học tốt

20 tháng 3 2020

Bn ơi,mai mốt bn chia ra từng câu cho dễ thấy nha,như vậy mấy bn khác đọc k ra sẽ k giúp bn đc

28 tháng 12 2023

\(S=1+2+2^2+2^3+...+2^{29}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\)

\(S=7+2^3.\left(1+2+2^2\right)+...+2^{27}.\left(1+2+2^2\right)\)

\(S=7+2^3.7+...+2^{27}.7\)

\(S=7.\left(1+2^3+...+2^{27}\right)\)

Vì \(7⋮7\) nên \(7.\left(1+2^3+...+2^{27}\right)⋮7\)

Vậy \(S⋮7\)

______

\(2^{x+1}+2^x.3=320\)

\(=>2^x.2+2^x.3=320\)

\(=>2^x.\left(2+3\right)=320\)

\(=>2^x.5=320\)

\(=>2^x=320:5\)

\(=>2^x=64=2^6\)

\(=>x=6\)

\(#NqHahh\)

\(#Nulc`\)

29 tháng 12 2023

mình cho thử thôi chứ mình biết 

 

28 tháng 3 2018

cau 1:b,cau2d,cau3b

20 tháng 1 2019
44 : 47 =  
 
6 : 80 =  
 

86 : 26 =

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10

1990.1990 -1992.1988

 

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

2 tháng 11 2023

a,     A = 1 + 3 + 32 + 33 + ... + 32000

    3.A =  3 + 32 + 33+ 33+... + 32001

    3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)

     2A    = 3 + 32 + 33 + ... + 32001 -  1 - 3 - 32 - 33 - ... - 32000

     2A   = 32001 - 1 

       A   = \(\dfrac{3^{2001}-1}{2}\)

       

a: \(61\cdot45+61\cdot23-68\cdot51\)

\(=61\left(45+23\right)-68\cdot51\)

\(=68\cdot61-68\cdot51\)

\(=68\left(61-51\right)=68\cdot10=680\)

b: \(3\cdot5^2-\left(75-4\cdot2^3\right)\)


\(=75-75+4\cdot8\)

\(=4\cdot8=32\)

c: \(36:\left\{2^2\cdot5-\left[30-\left(5-1\right)^2\right]\right\}\)

\(=\dfrac{36}{20-30+4^2}\)

\(=\dfrac{36}{-10+16}=\dfrac{36}{6}=6\)

d: \(\left(12\cdot49-3\cdot2^2\cdot7^2\right):\left(2020\cdot2021\right)\)

\(=\dfrac{\left(12\cdot49-12\cdot49\right)}{2020\cdot2021}=0\)

27 tháng 3 2019

a. = 23 . (55-45) + 230

    = 23 . 10 +230

    = 230 + 230

    = 460

b. = 71 . (66 - 41 - 1)

    = 71 . 24

    = 1704

c. = 50 . (11 + 22) - 100

    = 50 . 33 - 100

    = 1650 - 100

    = 1550

d. = 27. (54 - 50) + 50

    = 27 . 4 + 50

    = 108 + 50

    = 158

a) 23.55-45.23+230

    =23.(55-45)+230

    =23.10+230

    =230+230

    =460

b) 71.66-41.71-71

    =71.(66-41-1)

    =71.24

    =1704

c) 11.50+50.22-100

   =50.(11+22)-100

   =50.33-100

   =1550

d) 54.27-27.50+50

   =27.(54-50)+50

   =27.4+50

   =108+50

   =158

# Bé_Bông #

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$

$=3+2^2(1+2)+....+2^{2020}(1+2)$

$=3+3.2^2+....+3.2^{2020}$

$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.