\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)   Hãy tính giá trị của biểu thức sau :
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

Ta có: \(a=\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}=\frac{\sqrt{3}}{\sqrt{5}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{8\sqrt{15}}{15}\)

=> \(a^2=\frac{64}{15}\)

=> \(M=\sqrt{15a^2-8a\sqrt{15}+16}=\sqrt{15.\frac{64}{15}-8.\frac{8\sqrt{15}}{15}.\sqrt{15}+16}\)

\(M=\sqrt{64-64+16}=4\)

9 tháng 9 2016

\(C=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(C^2=\left(\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\right)^2\)

\(C^2=x^2+2\sqrt{x^2-1}-2\sqrt{\left(x^2+2\sqrt{x^2-1}\right)\left(x^2-2\sqrt{x^2-1}\right)}+x^2-2\sqrt{x^2-1}\)

\(C^2=2x^2-2\sqrt{x^4-2x^2\sqrt{x^2-1}+2x^2\sqrt{x^2-1}-\left(2\sqrt{x^2-1}\right)^2}\)

\(C^2=2x^2-2\sqrt{x^4-4\left(x^2-1\right)}\)

\(C^2=2x^2-2\sqrt{x^4-4x^2+4}\)

\(C=\sqrt{2x^2-2\sqrt{x^4-4x^2+4}}\) 

Thay: \(x=\sqrt{5}\) vào C, ta có:

\(C=\sqrt{2\sqrt{5}^2-2\sqrt{\sqrt{5}^4-4\sqrt{5}^2+4}}\)

\(C=\sqrt{10-2\sqrt{25-20+4}}\)

\(C=\sqrt{10-2\sqrt{9}}\)

\(C=\sqrt{10-6}\)

\(C=\orbr{\begin{cases}-2\\2\end{cases}}\)

Mà theo bài ra: \(\sqrt{x^2+2\sqrt{x^2-1}}>\sqrt{x^2-2\sqrt{x^2-1}}\)

\(\Rightarrow\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}>0\)

\(\Rightarrow C=2\)

9 tháng 9 2016

Đề câu a là \(4\sqrt{5}a\) hay \(4\sqrt{5a}\) . Thấy \(4\sqrt{5}a\) đúng hơn
 

26 tháng 7 2017

Giải

Ta có: \(\sqrt{\dfrac{5}{3}}+\sqrt{\dfrac{3}{5}}=\dfrac{\sqrt{5}}{\sqrt{3}}+\dfrac{\sqrt{3}}{\sqrt{5}}=\dfrac{8}{\sqrt{15}}\)

Vậy M = \(\sqrt{15\left(\dfrac{8}{15}\right)^2-8.\dfrac{8}{\sqrt{15}}.\sqrt{15}+16}\)

= \(\sqrt{8^2-8^2+16}=\sqrt{16}=4\)

20 tháng 6 2017

\(M=\sqrt{15a^2-8a\sqrt{15}+16}=\sqrt{\left(\sqrt{15}a-4\right)^2}\)

\(=\sqrt{15}a-4=\sqrt{15}\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)-4\)

\(=\left(3+5\right)-4=4\)

24 tháng 7 2016

2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)

b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)  thì 

     \(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)

         \(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)

        \(=\sqrt{4^2}\)

         \(=4\)

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

20 tháng 7 2018

\(A=\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}=\frac{2\left(\sqrt{5}+3\right)-2\left(\sqrt{5}-3\right)}{-4}=\frac{2\sqrt{5}+6-2\sqrt{5}+6}{-4}=\frac{12}{-4}=-3\)

Vay ........