Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{\frac{18}{4+\sqrt{15}}}-\frac{3}{2+\sqrt{3}}-3\sqrt{5}.\)
Thấy có 3 cái biểu thức nên mình tách ra làm từng cái nhé
\(\sqrt{\frac{18}{4+\sqrt{5}}}=\frac{\sqrt{18}}{\sqrt{4+\sqrt{15}}}=\frac{\sqrt{2}.\sqrt{18}}{\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)}\)
\(\Leftrightarrow\frac{6}{\sqrt{8+2\sqrt{15}}}=\frac{6}{\sqrt{3}+\sqrt{5}}\)( Khúc biển đổi ở mẫu là hẳng đẳng thức nha bạn )
\(\frac{6}{\sqrt{5}+\sqrt{3}}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{5-3}=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{2}\left(1\right).\)
\(\frac{3}{2+\sqrt{3}}=\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{3\left(2-\sqrt{3}\right)}{1}=\frac{6\left(2-\sqrt{3}\right)}{2}\left(2\right).\)
\(3\sqrt{5}=\frac{6\sqrt{5}}{2}\left(3\right).\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
\(B=\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{2}-\frac{6\left(2-\sqrt{3}\right)}{2}-\frac{6\sqrt{5}}{2}=6\left(\frac{\sqrt{5}-\sqrt{3}-2+\sqrt{3}-\sqrt{5}}{2}\right)\)
\(B=6.\left(-1\right)\)
\(B=-6\)
-6 là số hữu tỉ => biểu thức là số hữu tỉ
\(A=\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}\)
\(=\frac{2\left(\sqrt{5}+3\right)}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}-\frac{2\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}\)
\(=\frac{2\sqrt{5}+6}{-4}-\frac{2\sqrt{5}-6}{-4}\)
\(=-3\)
Vậy A là số hữu tỉ
a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{20}{-18}=\dfrac{-10}{9}\) là số hữu tỉ
b: \(=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\dfrac{24}{2}=12\) là số hữu tỉ
a) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2\sqrt{3}+2-\sqrt{3}\)
\(=\left(2\sqrt{3}-\sqrt{3}\right)+2\)
\(=\sqrt{3}+2\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{1+\sqrt{5}}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{1+\sqrt{5}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{12}{4}=3\)
c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{1}=14\)
\(C=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(C^2=\left(\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\right)^2\)
\(C^2=x^2+2\sqrt{x^2-1}-2\sqrt{\left(x^2+2\sqrt{x^2-1}\right)\left(x^2-2\sqrt{x^2-1}\right)}+x^2-2\sqrt{x^2-1}\)
\(C^2=2x^2-2\sqrt{x^4-2x^2\sqrt{x^2-1}+2x^2\sqrt{x^2-1}-\left(2\sqrt{x^2-1}\right)^2}\)
\(C^2=2x^2-2\sqrt{x^4-4\left(x^2-1\right)}\)
\(C^2=2x^2-2\sqrt{x^4-4x^2+4}\)
\(C=\sqrt{2x^2-2\sqrt{x^4-4x^2+4}}\)
Thay: \(x=\sqrt{5}\) vào C, ta có:
\(C=\sqrt{2\sqrt{5}^2-2\sqrt{\sqrt{5}^4-4\sqrt{5}^2+4}}\)
\(C=\sqrt{10-2\sqrt{25-20+4}}\)
\(C=\sqrt{10-2\sqrt{9}}\)
\(C=\sqrt{10-6}\)
\(C=\orbr{\begin{cases}-2\\2\end{cases}}\)
Mà theo bài ra: \(\sqrt{x^2+2\sqrt{x^2-1}}>\sqrt{x^2-2\sqrt{x^2-1}}\)
\(\Rightarrow\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}>0\)
\(\Rightarrow C=2\)
\(A=\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}=\frac{2\left(\sqrt{5}+3\right)-2\left(\sqrt{5}-3\right)}{-4}=\frac{2\sqrt{5}+6-2\sqrt{5}+6}{-4}=\frac{12}{-4}=-3\)
Vay ........