\(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\)và B= \(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2023

\(a,P=B:A\)

\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(ĐKXĐ:x\ge0;x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{3}\)

\(b,\) Để \(P=\dfrac{\sqrt{x}+3}{3}\) có giá trị nguyên

thì \(\sqrt{x}+3⋮3\)

\(\Leftrightarrow\sqrt{x}+3\in B\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in B\left(3\right)\) 

Kết hợp với điều kiện, ta được:

\(P\) nguyên khi \(x=m^2\left(m\in Z;m⋮3;m\ne3\right)\)

#Toru

a: 

ĐKXĐ: x>=0; x<>9

\(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(x-9\right)}=\dfrac{3\sqrt{x}+3}{x-9}\)

\(P=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{x-9}{3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+3}{3}\)

b: P nguyên khi \(\sqrt{x}+3⋮3\)

=>\(\sqrt{x}\in B\left(3\right)\)

=>\(x=k^2\left(k\in Z;k⋮3\right)\)

NV
5 tháng 6 2019

ĐKXĐ:...

\(M=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(N=\frac{x\sqrt{x}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)

Để \(M=N\Leftrightarrow x-1=2\sqrt{x}+1\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\)

NV
8 tháng 6 2019

ĐKXĐ: ...

\(D=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x-1}}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x+1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\left(2\sqrt{x}-x-1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{\left(x+1\right)}{\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{x+\sqrt{x}+1}\)

b/ Do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\) Để \(D>0\Leftrightarrow1-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 1\Rightarrow0\le x< 1\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

1 tháng 4 2020

1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)

Vậy khi x = 36 thì A = \(\frac{5}{4}\)

2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)

= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)

= \(\frac{\sqrt{x}+2}{x-16}\)

Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)

b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)

c: \(=\left|x-4\right|+\left|x-6\right|\)

=x-4+6-x=2

15 tháng 7 2018

\(P=B:A\)

\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}:\dfrac{\sqrt{x}+3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(P=\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{1}{3}\Leftrightarrow3\sqrt{x}-6=\sqrt{x}+3\)

\(\Leftrightarrow2\sqrt{x}=9\Leftrightarrow\sqrt{x}=4,5\Leftrightarrow x=\dfrac{81}{4}\)

b. \(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-5}{\sqrt{x}+3}=1-\dfrac{5}{\sqrt{x}+3}\)

Ta có: \(-\dfrac{5}{\sqrt{x}+3}\ge-\dfrac{5}{\sqrt{0}+3}=-\dfrac{5}{3}\)

\(\Rightarrow1-\dfrac{5}{\sqrt{x}+3}\ge1-\dfrac{5}{3}=-\dfrac{2}{3}\)

Suy ra: \(P\ge-\dfrac{2}{3}\) khi \(x=0\)