![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(,A=x^2-12x+37=\left(x^2-12x+36\right)+1\)
\(=\left(x-6\right)^2+1\)
với mọi giá trị của x , ta có:
\(\left(x-6\right)^2\ge0\Rightarrow\left(x-6\right)^2+1\ge1\)
Vậy Min A = 1
Để A = 1 thì \(x-6=0\Rightarrow x=6\)
\(B=-x^2+14x-53\)
\(=-\left(x^2-14x+49\right)-4\)
\(=-\left(x-7\right)^2-4\le-4\)
Vậy Max B = -4
Để B = -4 thì \(x-7=0\Rightarrow x=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề cm a2018+b2018=2
Ta có:\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3+1-3ab=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)
Vì a,b > 0 => a + b + 1 > 0
=>\(a^2+ab+b^2-a-b+1=0\)
=>2a2+2ab+2b2-2a-2b+2=0
=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0
=>(a+b)2+(a-1)2+(b-1)2=0
Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)
=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1
=>\(a^{2018}+b^{2018}=1+1=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a-b=1\Leftrightarrow\left(a-b\right)^3=1^3\)
\(\Leftrightarrow a^3-b^3-3ab\left(a-b\right)=1\)
\(\Leftrightarrow a^3-b^3-3ab=1\)
\(\Leftrightarrow a^3-b^3=1+3ab\) (như vầy mới đúng đề nha bn)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
la a3+b3+c3=3abc chu mjk sua lun ngen
ta co:a+b+c=0
=>a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+b3+c3=-3ab(a-b)
=>a3+b3+c3=-3ab(-c)
=>a3+b3+c3=3abc(dfcm)
Tick nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3=a3+3ab(a+b)+b3 (1)
thay a+b=1 vào (1) ta được :
13=a3+3ab.1+b3
<=>1=a3+3ab+b3
<=>a3+b3=1-3ab
a^3+b^3+3ab(a+b) =(a+b)^3
mà a+b=1 suy ra a^3+b^3+3ab=1
suy ra a^3+b^3=1-3ab
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^3-b^3=1+3ab\)
Biến đổi VT ta được :
\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)=a^2-2ab+b^2+3ab=\left(a+b\right)^2+3ab=1+3ab=VP\)
Vậy \(a^3-b^3=1+3ab\)
Cho a - b = 1 . Chứng minh a^3 - b^3 = 1 + 3ab
a3−b3=1+3ab
Biến đổi VT ta được :
VT=(a−b)(a2+ab+b2)=a2−2ab+b2+3ab=(a+b)2+3ab=1+3ab=VP
suy ra................
k mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Tôi chết chx ???
\(a^3-b^3\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(a^2+ab+b^2\)
\(a^2-2ab+b^2+3ab\)
\(\left(a-b\right)^2+3ab\)
\(1^2+3ab=1+3ab=VP\)
\(< =>ĐPCM\)