Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2015^{2016}+1< 2015^{2017}+1\Rightarrow\frac{2015^{2016}+1}{2015^{2017}+1}< 1\)
\(\Rightarrow A=\frac{2015^{2016}+1}{2015^{2017}+1}< \frac{2015^{2016}+1+2014}{2015^{2017}+1+2014}=\frac{2015\left(2015^{2015}+1\right)}{2015\left(2015^{2016}+1\right)}=\frac{2015^{2015}+1}{2015^{2016}+1}=B\)
Vậy \(A< B\)
\(2015A=\frac{2015^{2017}+2015}{2015^{2017}+1}=\frac{2015^{2017}+1+2014}{2015^{2017}+1}=1+\frac{2014}{2015^{2017}+1}\)
\(2015B=\frac{2015^{2016}+2015}{2015^{2016}+1}=\frac{2015^{2016}+1+2014}{2015^{2016}+1}=1+\frac{2014}{2015^{2016}+1}\)
vì \(\frac{2014}{2015^{2017}+1}< \frac{2014}{2015^{2016}+1}\)
nên \(2015A< 2015B\)
=> \(B>A\)
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha