K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

\(\frac{2015}{2014}-1=\frac{1}{2014}>\frac{1}{2015}=\frac{2016}{2015}-1\Rightarrow\frac{2015}{2014}>\frac{2016}{2015}\Rightarrow-\frac{2015}{2014}

2 tháng 6 2015

\(1+A=1+\frac{2015}{-2014}=\frac{-1}{2014}\)

\(1+B=1+\frac{2016}{-2015}=\frac{-1}{2015}\)

Vì \(\frac{-1}{2014}

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

19 tháng 4 2015

phân tích B ta có 

B = \(\frac{2014+2015}{2015+2016}=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\) 

vì  \(\frac{2014}{2015+2016}

4 tháng 5 2016

A=2014/2015+2015/2016.                                                                       B=(2014+2015)/(2015+2016)

A=1-1/2015+1-1/2016.                                                                             B=1-2/4031

A=1+1-(2015+2016)/(2015x2016).           So sánh

A=1+1-(4031)/(2015x2x1008).                   1+1-[4031/(4030x1008)]>1;1-2/4031<1.

A=1+1-[4031/(4030x1008)].                       Vậy 1+1-[4031/(4030x1008)]>1-2/4031.

                                                =>A>B

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

3 tháng 3 2016

de ot la dau = nha

16 tháng 6 2016

\(y=\frac{2014}{\frac{2015}{\frac{2015}{2016}}}=\frac{2014}{2015}.\frac{2015}{2016}=\frac{1007}{1008}=1-\frac{1}{2008}\)

\(\frac{2014}{2015}=1-\frac{1}{2015}\)

Vì \(\frac{1}{2008}>\frac{1}{2015}\)nên \(\frac{1007}{1008}< \frac{2014}{2015}\)

Vậy A>y

16 tháng 6 2016

y < 1 < A. 

Bạn chứng minh điều đó nhé!