Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,vì \(m< n\)
\(\Rightarrow m+2< n+2\) cộng cả 2 vế với 2
b,vì \(m< n\)
\(\Rightarrow m+\left(-5\right)< n+\left(-5\right)\)cộng cả 2 vế với -5
\(\Rightarrow m-5< n-5\)
a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương
Ta có:
* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)
* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)
b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)
Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)
mà ab2<b3 (a<b)
\(\Rightarrow a^3< b^3\)
\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
\(< 2016^2=B\)
Nên A<B
\(B=2016^2\)
\(\Rightarrow B=\left(2017-1\right)^2\)
\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)
Lại Có :
\(A=2015.2017=\left(2017-2\right).2017\)
\(\Rightarrow A=2017^2-4034\)(2)
Từ (1) và (2) => B>A
a) So sánh (-2).3 và -4.5.
Ta có: -2 < -1,5 và 3 > 0
=>(-2).3 < (-1,5).3
=>(-2).3 < -4,5
b) Từ bất đẳng thức: (-2).3 < -4,5 ta nhân cả hai vế của bất đẳng thức với 10 > 0 thì được: (-2).30 < -45
Từ bất đẳng thức: (-2).3 < -4,5 ta cộng vào cả hai vế với 4,5 thì được:
(−2).30+4,5<−4,5+4,5(−2).30+4,5<−4,5+4,5
=>(-2).30 + 4,5 < 0
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B
a < b
⇒ a + (-2) < b + (-2)
(Cộng cả hai vế của BĐT với -2).
hay a – 2 < b – 2.