K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Do $0\leq a,b,c\le1 1$ nên: \(\text{VT}\leq \frac{a+b+c}{1+abc}\)

Giờ ta cần cm: $a+b+c\leq 2(1+abc)(*)$

Thật vậy:
$c(a-1)(b-1)\geq 0$

$\Leftrightarrow c(ab-a-b+1)\geq 0$

$\Leftrightarrow abc\geq ac+bc-c$

$\Leftrightarrow 2(abc+1)\geq ac+bc-c+abc+2$

Mà:

$ac+bc-c+abc+2-(a+b+c)=abc+(a+b)(c-1)-2(c-1)$

$=abc+(a+b-2)(c-1)\geq 0$ với mọi $0\leq a,b,c\leq 1$

$\Rightarrow ac+bc-c+abc+2\geq a+b+c$

$\Rightarrow 2(abc+1)\geq a+b+c$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

16 tháng 12 2018

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

Phần chứng minh (*) khá quen thuộc, áp dụng phân tích đa thức thành nhân tử và kiến thức chuyển vế, bạn có thể tham khảo thêm

undefined

NV
15 tháng 1 2021

\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)

Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)

Cộng vế với vế:

\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)

NV
3 tháng 3 2022

Đặt vế trái là P

\(P=\dfrac{1.c+ab}{a+b}+\dfrac{1.a+bc}{b+c}+\dfrac{1.b+ac}{a+c}=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)

\(P=\dfrac{ac+c^2+bc+ab}{a+b}+\dfrac{a^2+ac+ab+bc}{b+c}+\dfrac{ab+ac+b^2+bc}{a+c}\)

\(P=\dfrac{c\left(a+c\right)+b\left(a+c\right)}{a+b}+\dfrac{a\left(a+c\right)+b\left(a+c\right)}{b+c}+\dfrac{a\left(b+c\right)+b\left(b+c\right)}{a+c}\)

\(P=\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Áp dụng BĐT Cô-si:

\(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\sqrt{\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)}}=2\left(a+c\right)\) (1)

 Tương tự: \(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\) (2)

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\) (3)

Cộng vế với vế (1);(2);(3):

\(2.\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+2.\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+2.\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+b\right)+2\left(b+c\right)+2\left(c+a\right)\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+c}\ge2\left(a+b+c\right)=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

19 tháng 6 2021

\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)

\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)

Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\)\(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)

Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

19 tháng 6 2021

bạn có thể lm rõ hơn ở chỗ tớ khoanh ko ạ ?

undefined