Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)
Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên
Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)
\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)
Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )
Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

sửa đề bài tẹo : \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\times2\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}+3\)

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 cái kia rồi cộng lại
\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

Lời giải:
Theo hệ quả quen thuộc của BĐT AM-GM thì:
\((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)
\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)
Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)
hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

a)
<=>(x-y)+(x-y)/xy≥0
(x-y)(1-1/xy)≥0
x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0
x≥y=>x-y≥0
=> (x-y)(1-1/xy)≥0 => dccm
dang thuc khi x=y
or x.y=1

Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\) (đúng)
\(\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=1\)
Khi đó áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Tương tự cho 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=VP\)
Xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Áp dụng BĐT Bu-nhi-a ta có:
\(\sqrt{a^2+1}=\sqrt{a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{4\left(a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)}\)
\(\ge\dfrac{1}{2}\sqrt{\left(a+\dfrac{1}{\sqrt{3}}.3\right)^2}=\dfrac{1}{2}\sqrt{\left(a+\sqrt{3}\right)^2}=\dfrac{a+\sqrt{3}}{2}\left(a>0\right)\)
Tương tự ta cũng có: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{2b}{b+\sqrt{3}}\)
\(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{2c}{c+\sqrt{3}}\)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
\(\le2\left(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\right)\) (1)
Áp dụng BĐT phụ: \(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\) ta có:
\(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\)
\(=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{a+c}{a+c}+\dfrac{b+a}{a+b}+\dfrac{c+b}{b+c}\right)=\dfrac{3}{4}\) (2)
Từ (1); (2)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le2.\dfrac{3}{4}=\dfrac{3}{2}\left(đpcm\right)\)
Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{\sqrt{3}}\)