Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi tương đương:
\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)
b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)
\(=\frac{a^2+b^2+c^2}{abc}\)
\(\frac{a^2+b^2+c^2}{abc}\ge\frac{2ab+2bc+2ca}{abc}\)(BĐT tương đương)
\(\frac{2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{abc}\)
\(=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< =>ĐPCM\)
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2]=2(ab+bc+ac)^2$
Ta có đpcm.
Ta có :
\(\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)
\(\Rightarrow dpcm\)
\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\)
áp dụng Cô si cho 2 số dương \(\frac{ab}{c}\)và \(\frac{bc}{a}\)ta được: \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)(1)
cho 2 số dương \(\frac{ab}{c}\)và \(\frac{ca}{b}\)ta được: \(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)(2)
cho 2 số dương \(\frac{bc}{a}\)và \(\frac{ca}{b}\)ta được: \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)(3)
(1) + (2) + (3) vế theo vế ta được: \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
hay \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)(đpcm)