\(^2\)- 4xy + 2y\(^2\)

       B = 2x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

A - B = ( 5x- 12xy + 2y) + ( -4x+ 12xy - y)

        = 5x- 12xy + 2y -  4x2 + 12xy - y2

           = 9x2 + y2

        x2 > hoặc = 0 => 9x2 > hoặc = 0

      y2 > hoặc = 0

<=> 9x2 + y> hoặc = 0

A + B > hoặc = 0

nên A và B không cùng có giá trị âm

tương tự 2) lấy A - B 

              3) lấy A + B

14 tháng 3 2018

Ta có: \(A.B.C=\frac{-1}{2}x^2yz^2\cdot\left(\frac{-3}{4}\right)xy^2z^2\cdot x^3y\)

\(=\left[\left(\frac{-1}{2}\right)\cdot\left(\frac{-3}{4}\right)\right]\left(x^2yz^2xy^2z^2x^3y\right)\)

\(=\frac{3}{8}x^6y^4z^4\)

Nếu cùng âm thì tích của chúng phải âm mà  \(A.B.C=\frac{3}{8}x^6y^4z^4\ge0\)

Vậy các đơn thức A,B,C không thể cùng nhận giá trị âm

14 tháng 3 2018

Giúp với!

1 tháng 6 2016

Từ x-y=7

=>x=y+7

Thay x=y+7 vào B ta được:

\(B=\frac{3.\left(y+7\right)-7}{2.\left(y+7\right)+y}-\frac{3y+7}{2y+\left(y+7\right)}\)\(=\frac{3y+21-7}{2y+14+y}-\frac{3y+7}{3y+7}=\frac{3y+14}{3y+14}-\frac{3y+7}{3y+7}=1-1=0\)

Vậy B=0 khi x-y=7

1 tháng 6 2016

bài 1:

 \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)=> (a+b)(c-d)=(a-b)(c+d)

=> ac-ad+bc-bd=ac+ad-bc-bd

=>2ad=2bc

=> ad=bc

=> \(\frac{a}{b}\)=\(\frac{c}{d}\)

vậy Nếu \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)

19 tháng 2 2017

Mình nghĩ đề đúng phải là:
        Cho   \(a=x+\frac{1}{x},\)\(b=y+\frac{1}{y},\)\(c=xy+\frac{1}{xy}.\)
        Chứng minh:  \(a^2+b^2+c^2-abc=4\)

19 tháng 2 2017

- Ta có: \(A.B=\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=C+\frac{x}{y}+\frac{y}{x}\)
\(\Rightarrow\)\(A.B-C=\frac{x}{y}+\frac{y}{x}\)\(\Rightarrow\)\(\left(A.B-C\right)^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2\)                                                                  \(\left(1\right)\)
- Ta lại có:       \(A^2=\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\) \(\Rightarrow\) \(A^2-2=x^2+\frac{1}{x^2}\)
                       \(B^2=\left(y+\frac{1}{y}\right)^2=y^2+\frac{1}{y^2}+2\)\(\Rightarrow\)\(B^2-2=y^2+\frac{1}{y^2}\)

                        \(C^2=\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)\(\Rightarrow\)\(C^2-2=x^2y^2+\frac{1}{x^2y^2}\)

\(\Rightarrow\) \(\left(A^2-2\right)\left(B^2-2\right)=\left(x^2+\frac{1}{x^2}\right)\left(y^2+\frac{1}{y^2}\right)=x^2y^2+\frac{1}{x^2y^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)
       \(=C^2-2+\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)=\left(C^2-4\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)=\left(C^2-4\right)+\left(\frac{x}{y}+\frac{y}{x}\right)^2\)
\(\Rightarrow\)\(\left(A^2-2\right)\left(B^2-2\right)-\left(C^2-4\right)=\left(\frac{x}{y}+\frac{y}{x}\right)^2\)                                                                               \(\left(2\right)\) 
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\left(A.B-C\right)^2=\left(A^2-2\right)\left(B^2-2\right)-\left(C^2+4\right)\)
                                      \(\Rightarrow\)\(\left(A.B-C\right)^2=\left(A^2-2\right)\left(B^2-2\right)-C^2-4\)
Triển khai rút gọn, ta được  :    \(A^2+B^2+C^2-A.B.C=4\)