Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 +23 + 24 +...+260 ( có 60 số hạng)
A = (2+22 +23) + (24+25+26) + ...+ (258 +259 + 260)
A = 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^58.(1+2+2^2)
A = 2.7 + 2^4.7 + ...+ 2^58.7
A = 7.(2+2^4+...+2^58) chia hết cho 7
A chia hết cho 15 thì bn làm tương tự nha! Gợi ý: nhóm 4 số hạng với nhau
A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^59+2^60)
A=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^59(1+2)
A=2.3+2^3.3+2^5.3+...+2^59.3
A=3(2+2^3+2^5+...+2^59)
=>A chia hết cho 3
ta có \(2C=2+2^2+2^3+...+2^{60}\)
=> \(2C-C=2+2^2+2^3+...+2^{60}-1-2-2^2-...-2^{59}=2^{60}-1\)
=> \(C=2^{60}-1\)
=> C và \(2^{60}\) là 2 số tự nhiên liên tiếp (ĐPCM)
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
A=(2+2^2)+...+(2^59+2^60)
=2(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59)
nên A chia hết cho 3.
A= (2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+2^4+..+2^58)
nên A chia hết cho 7
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6...
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)...
=15(2+2^5+...+2^57)
nên A chia hết cho 15
Ta có :
A = 2 + 22 + 23 + 24 + 25 + ... + 260
A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 256 + 257 + 258 + 259 + 260 )
A = 2 . (1 + 2 + 22 + 23 + 24 + 25 ) + ... + 256 . ( 1 + 2 + 22 + 23 + 24 + 25 )
A = 2 . 63 + ... + 256 . 63
A = 63 . ( 2 + ... + 256 )
A = 21 . 3 . ( 2 + ... + 256 ) \(⋮\)21
Muốn chứng minh A chia hết cho 21 ta phải chứng minh A chia hết cho 3;7
Ta có :A= (2+22)+(23+24)+(25+26)+.....+(259+260)
A=2.(1+3)+23.(1+2)+25.(1+2)+....+259.(1+2)
A=2.3+23.3+25.3+...+259.3
A=3.(2+23+25+...+259) chia hết cho 3 (1)
Ta có : A= (2+22+23)+(24+25+26)+......+(258+259+260)
A=2.(1+2+22)+24.(1+2+22)+....+258.(1+2+22)
A=2.7+24.7+......+258.7
A=7.(2+24+...+258) chia hết cho 7 (2)
từ (1) ; (2) suy ra tổng A chia hết cho 21
Nếu đứng Nhớ k mình nha !