Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = ( 4 + 42 ) + ( 43 + 44 ) + ... + (499 + 4100)
A = ( 4 + 42 ) + 43(4 + 42 ) + .... + 499(4 + 42)
A = 20 + 43.20 + .... + 499.20
A = 20 ( 1 + 43 + .... + 499 )
A = 4.5.(1 + 43 + ... + 499 ) ⋮ 5 ( đpcm )
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1
Ta có:
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = (4 + 42) + (43 + 44) + ... + (499 + 4100)
A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)
A = 4.5 + 43.5 + ... + 499.5
A = 5.(4 + 43 + ... + 499)
Vậy A chia hết cho 5
A có 100 số hạng
Tổng A :
( 100 + 1 ) x 100 : 2 = 5050 \(⋮\)5
=> A \(⋮\)5
theo mình nghĩ chắc là 100