K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2022

`2A=2 + 2^2 + 2^3 + ... + 2^2023`

`\rightarrow 2A - A = (2^2023 - 2^2022 + 2^2022 - 2^2021 + 2^2021 - ... -1)`

`A = 2^2023 - 1 = B`

15 tháng 8 2022

`*2^2023` là `2^(2023)` nhé

13 tháng 11 2023

Ta có:

\(A=1+2+2^2+...+2^{2002}\)

\(2A=2+2^2+2^3+...+2^{2003}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)

\(A=2^{2003}-1\)

Mà: \(2^{2003}=2^{2003}\)

\(\Rightarrow2^{2003}-1< 2^{2003}\)

\(\Rightarrow A< B\)

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

14 tháng 11 2023

A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰

⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹

⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)

= 2²⁰¹¹ - 2⁰

= 2²⁰¹¹ - 1

= B

Vậy A = B

30 tháng 10

BÀI BẠN GIỐNG Y CHANG BÀI MIK LUÔN

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

15 tháng 5 2022

undefined

15 tháng 5 2022

undefined

2 tháng 1

\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)

Ta thấy: \(2^{61}-2< 2^{61}\)

\(\Rightarrow A< B\)

2 tháng 1

A=2+22+23+...+260

\(\Rightarrow\)2A=22+23+24+...+261

\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)

\(\Rightarrow\)A=261-2

Mà 261-2<261 nên A<B

Vậy A<B

bạn viết rõ lũy thừa giúp mình với

 

7 tháng 1

\(A=B\)

4 tháng 2 2019

A=4+22+23+....+220

2A=8+23+24+...+221

=> A+2A-A = (8+23+24+...+221)  - (4+22+23+....+220)

=>A=221+8 - (22+4)=221

=>A là 1 lũy thừa của 2

12 tháng 11 2023

A= 4+22+23+....+220

2A= 8+23+24+...+221

A + 2A  -A = (8+2^3+2^4+...+2^21)  - (4+2^2+2^3+....+2^20)

A= 2^21+8 - (2^2+4)=2^21

Vậy A là 1 lũy thừa của 2