Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
mik bt lm câu 1 thôi nha, bn thông cảm:
a = 2007.2009 b = 20082
=(2008 - 1)(2008 + 1)
= 20082 - 1
Ta có, a = 20082 - 1, b = 20082
mà 20082 - 1 < 20082
=> a < b
\(A=2^0+2^1+2^2+...+2^{20}\)
\(2A=2^1+2^2+2^3+...+2^{21}\)
\(A=2^{21}-1\)
Vậy \(A>B\)
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)
Ta thấy: \(2^{61}-2< 2^{61}\)
\(\Rightarrow A< B\)
A=2+22+23+...+260
\(\Rightarrow\)2A=22+23+24+...+261
\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)
\(\Rightarrow\)A=261-2
Mà 261-2<261 nên A<B
Vậy A<B
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)