Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên ghi đầy đủ đề thay vì chỉ có hình vẽ để mọi người hiểu đề và hỗ trợ tốt hơn bạn nhé.
Ta có:
\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)
\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)
\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)
=>M=36k=24m=30n
=>M chia hết cho 36,24,30
Ta thấy: ƯCLN(36,24,30)=360
=>M chia hết cho 360
=>M=360h
mà M là số bé nhất có 4 chữ số=>h bé nhất
=>999<360h
=>2<h
mà h bé nhất
=>h=3
=>M=3.360=1080
Vậy M=1080
$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)
=> \(\left(\frac{a}{b}\right)^{404}.\left(\frac{b}{c}\right)^{404}.\left(\frac{c}{d}\right)^{404}.\left(\frac{d}{e}\right)^{404}.\left(\frac{e}{g}\right)^{404}\)
\(=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}\)
=> \(\left(\frac{abcde}{bcdeg}\right)^{404}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404+404+404+404}\)
=> \(\frac{a^{404}}{g^{404}}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{2020}\)
Giải thích các bước giải:
Trong có góc BAD tù nên góc BAD > góc ADB => BD > BA. (1)
Ta có góc BDE = góc BAD + góc ABD (vì …)
Suy ra góc BDE là góc tù, vậy góc BDE là góc lớn nhất trong 3 góc của tam giác BDE.
Trong tam giác BDE ta có: góc BDE > gocsBED => BE > BD. (2)
Tương tự có góc BEC tù, trong tam giác BEC có góc BEC > góc BCE => BC > BE (3)
Từ 1, 2 và 3 suy ra: BA < BD < BE < BC
if a<b,bcz of a^b=b^c so b>c c<d d>e e<f f>g g<a bcz of g<a and a<b so g<b (not possible)
Same with a>b ,so a=b.
Do again multiple time ,we get a=b=c=d=e=f so bcs f^g=g^a,so f^g=g^f so g=f.
So totally ,we get a=b=c=d=e=f=g.