Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a< b\\c< d\\e< f\end{cases}}\Rightarrow a+c+e< b+d+f\)
\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)
=> dpcm
Theo đề bài ta có:
a<b; c<d;e<f nên cộng vế với vế ta được:
a+c+e<b+d+f
<=>a+c+e+a+c+e<b+d+f+a+c+e
<=>2(a+c+e)<a+b+c+d+e+f
<=>\(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)(ĐPCM)
a < b \(\Rightarrow\) 2a < a + b
b < d \(\Rightarrow\) 2b < c + d
m < n \(\Rightarrow\) 2m < m + n
\(\Rightarrow\) 2a + 2b + 2m = 2 ( a + b + m ) < ( a + b + c + d + m + n ) . Do đó
a + b + m/a + b + c + d + m + n < 1/2 \(\Rightarrow\) ( đpcm )
\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Đặt \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)
\(\frac{b}{b+c+d}< \frac{b}{b+d}\)
\(\frac{c}{c+d+a}< \frac{c}{a+c}\)
\(\frac{d}{d+a+b}< \frac{d}{d+b}\)
\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)
\(\Rightarrow S< 2\left(1\right)\)
Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow S>1\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
Ta có \(\frac{1}{2}=\frac{a+c+m}{a+m+c+a+m+c}=\frac{a+c+m}{2.\left(a+c+m\right)}\)
\(\frac{a+c+m}{a+b+c+d+m+n}=\frac{a+c+m}{a+c+m+d+m+n}\)
Vì a<b;c<d;m<n
=>a+c+m<b+d+n
=2(a+c+m)<a+c+m+b+d+n
=>\(\frac{a+c+m}{2.\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)
=>\(\frac{1}{2}>\frac{a+c+m}{a+b+c+d+m+n}\)(ĐPCM)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)