Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;b>0\)
\(a+b\ge2\sqrt{ab};\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra <=> a=b
a/d bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow P\ge\frac{4}{9-x+x+4}=\frac{4}{13}\)
Dấu "=" xảy ra <=>\(9-x=x+4\)<=>\(x=\frac{5}{2}\)
sua de \(\frac{3}{x^4-x^3+x-1}\) \(-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\) (dk \(x\ne+-1\) )
P=\(\frac{3}{\left(x^2-1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x^2-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
=\(\frac{2}{x^4+x^2+1}>0\)
P\(< \frac{32}{9}\Leftrightarrow\frac{2}{x^4+x^2+1}< \frac{32}{9}\)
\(\Leftrightarrow16x^4+16x^2+7>0\)
\(\Rightarrow\)\(0< P< \frac{32}{9}\) VOI X KHAC 1;-1
Trả lời
a)ĐKXĐ
x > = 0 ; x khác 4
P=\(\frac{\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x-2}\right)\left(\sqrt{x-2}\right)}=\)\(\frac{-2}{x-4}\)
b)P=1/5
=>\(\frac{-2}{x-4}=\frac{1}{5}\Rightarrow-10=x-4\Rightarrow x=-6\)(loại vì x > 0)
Vậy không có x
a, \(\hept{\begin{cases}x-1\ne0\\\sqrt{x}+1\ge1\end{cases}\Rightarrow\hept{\begin{cases}x\ne1\\\sqrt{x}\ge0\end{cases}\Rightarrow}x>1}\)
=> ĐKXĐ: x>1
\(A=\frac{3}{1-x}+\frac{4}{x}\ge\frac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)
Dấu = xảy ra khi: \(x=\frac{2}{\sqrt{3}+2}\)
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
a) \(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{x-1}\right)\)
\(P=\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\div\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\div\frac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\times\frac{x-1}{x-4}\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-4}\)
\(P=\frac{x-3\sqrt{x}+2}{x-4}\)
b) Để P < 0
=> \(\frac{x-3\sqrt{x}+2}{x-4}< 0\)
Xét hai trường hợp
I) \(\hept{\begin{cases}x-3\sqrt{x}+2>0\\x-4< 0\end{cases}}\)
+) \(x-3\sqrt{x}+2>0\)
<=> ( √x - 1 )( √x - 2 ) > 0
1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>4\end{cases}}\Leftrightarrow x>4\)(1)
2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 1\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 4\end{cases}}\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ : \(0\le x< 1\)(2)
+) x - 4 < 0 <=> x < 4 (3)
Từ (1), (2) và (3) => \(0\le x< 1\)
II) \(\hept{\begin{cases}x-3\sqrt{x}+2< 0\\x-4>0\end{cases}}\)
+) \(x-3\sqrt{x}+2< 0\)
<=> ( √x - 1 )( √x - 2 ) < 0
1. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 1\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>4\end{cases}}\)( loại )
2. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 4\end{cases}}\Leftrightarrow1< x< 4\)(1)
+) x - 4 > 0 <=> x > 4 (2)
Từ (1) và (2) => Không có giá trị của x thỏa mãn
Vậy với \(0\le x< 1\)thì P < 0
vì -4<x<9 nên 9-x>0 và x+4>0
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được như sau \(\frac{1}{9-x}+\frac{1}{x+4}\ge\frac{4}{9-x+x+4}=\frac{4}{13}\)
\(P_{min}=\frac{4}{13}\) khi \(9-x=x+4\Leftrightarrow x=\frac{5}{2}\)