Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{x^4-x^3+x-1}-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\)
\(=\frac{3}{\left(x-1\right)\left(x^3+1\right)}-\frac{1}{\left(x+1\right)\left(x^3-1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{x^2-x+1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)\(=\frac{3x^2+3x+3-x^2+x-1}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2-4x-4}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2x^2-2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2}{x^4+x^2+1}\)
\(\Rightarrow A=\frac{2}{x^4+x^2+1}\left(x\ne\pm1\right)\)
Ta có: \(x^4+x^2+1=\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy A > 0 với mọi \(x\ne\pm1\)
Mình giải trước mấy câu dễ dễ ha.
(Tự add điều kiện vào)
Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)
Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.
Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)
Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)
Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.
-----
Câu 2: (Tư tưởng đổi biến quá rõ ràng)
Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)
(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)
-----
Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)
(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)
Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).
Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
sua de \(\frac{3}{x^4-x^3+x-1}\) \(-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\) (dk \(x\ne+-1\) )
P=\(\frac{3}{\left(x^2-1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x^2-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
=\(\frac{2}{x^4+x^2+1}>0\)
P\(< \frac{32}{9}\Leftrightarrow\frac{2}{x^4+x^2+1}< \frac{32}{9}\)
\(\Leftrightarrow16x^4+16x^2+7>0\)
\(\Rightarrow\)\(0< P< \frac{32}{9}\) VOI X KHAC 1;-1