$b=\frac{a+c}{2}$b=a+c2 và $c=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

xin lỗi mình chưa tới tuổi lớp 7

20 tháng 10 2019

Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)

\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)

\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)

\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)

Câu a) mình nghĩ phải chứng minh như thế.

Chúc bạn học tốt!


20 tháng 10 2019

mk vt thiếu \(\frac{a}{b}=\frac{c}{d}\)

7 tháng 11 2017

Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.

\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\Rightarrow M=-1-1-1-1=-4\)

Xét \(a+b+c+d\ne0\)thì ta có:

\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)

Lấy 2 cái đầu cộng với nhau ta được:

\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)

\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)

Tương tự ta cũng có:

\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)

\(\Rightarrow M=1+1+1+1=4\)

7 tháng 11 2017
mik đang phân vân câu trả lời của mik
23 tháng 5 2017

a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Từ ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)

Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)\(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)