\(\frac{a}{b}\)\(=\)\(\frac{c}{d}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)

\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)

\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)

\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)

Câu a) mình nghĩ phải chứng minh như thế.

Chúc bạn học tốt!


20 tháng 10 2019

mk vt thiếu \(\frac{a}{b}=\frac{c}{d}\)

11 tháng 2 2019

hok trường chuyên mak dell bt bài ni ak:))

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay vào ta được:\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bk\cdot dk}{7b^2k^2-5bk\cdot dk}=\frac{bk^2\left(7b+5d\right)}{bk^2\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(1\right)\)

\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

11 tháng 2 2019

Ta có : a/b = c/d => a/c = b/d

Đặt \(\frac{a}{c}=\frac{b}{d}=k\) => \(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Khi đó, ta có: \(\frac{7.\left(ck\right)^2+5c^2k}{7\left(ck\right)^2-5c^2k}=\frac{7.c^2.k^2+5.c^2.k}{7.c^2.k^2-5.c^2.k}=\frac{\left(7k+5\right).c^2.k}{\left(7k-5\right).c^2.k}=\frac{7k+5}{7k-5}\)(1)

                     \(\frac{7.\left(dk\right)^2+5.d^2.k}{7\left(dk\right)^2-5.d^2.k}=\frac{7.d^2.k^2+5.d^2.k}{7.d^2.k^2-5.d^2.k}=\frac{\left(7k+5\right).d^2.k}{\left(7k-5\right).d^2.k}=\frac{7k+5}{7k-5}\) (2)

Từ (1) và (2) suy ra (Đpcm)

6 tháng 10 2017

làm nhanh giúp mình

6 tháng 10 2017

Tử và mẫu = nhau nên ta có đpcm (?!)

Bạn xem lại đề đi nhé

12 tháng 7 2017

Theo đề bài thì ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}=\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(1\right)\)

Ta cần chứng minh:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)

\(\Leftrightarrow\frac{7a+5c}{7a-5c}=\frac{7b+5d}{7b-5d}\)

\(\Leftrightarrow\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(2\right)\)

Từ (1) và (2) ta suy ra điều phải chứng minh

13 tháng 10 2016

Có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\begin{cases}a=c.k\\b=d.k\end{cases}\)

Ta có:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{a.\left(7a+5c\right)}{a.\left(7a-5c\right)}=\frac{7.c.k+5c}{7.c.k-5c}=\frac{c.\left(7.k+5\right)}{c.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(1\right)\)

\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b.\left(7b+5d\right)}{b.\left(7b-5d\right)}=\frac{7.d.k+5d}{7.d.k-5d}=\frac{d.\left(7.k+5\right)}{d.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\left(đpcm\right)\)

 

11 tháng 2 2019

bài ni dễ mà ko bt lm

thế mà cx hk đt toán

11 tháng 2 2019

câu mi hỏi dễ hơn

10 tháng 5 2016

Gọi a/b=c/d=k =>a=bk;c=dk

=>\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7\left(bk\right)^2+5\left(bk\right)\left(dk\right)}{7\left(bk\right)^2-5\left(bk\right)\left(dk\right)}=\frac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\frac{k^2\left(7b^2+5bd\right)}{k^2\left(7b^2-5bd\right)}=\frac{7b^2+5bd}{7b^2-5bd}\)

Vậy \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)

11 tháng 5 2016

Đỗ Lê Tú Linh, cảm ơn bạn nhiều, mình cũng làm như thế nhưng lại quên không thay c=dk. Giờ mình biết làm rồi 

vui