\(3x-4y=0\). Tìm Min của biểu thức \(M=x^2+y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

9 tháng 9 2016

Áp dụng bđt Bunhiacopxki , ta có : 

\(0=\left(3.x+4.y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge0\)

=> Min M = 0 \(\Leftrightarrow\begin{cases}\frac{x}{3}=\frac{y}{4}\\3x+4y=0\end{cases}\) \(\Leftrightarrow x=y=0\)

9 tháng 9 2016

bài này ở chỗ nào thế

20 tháng 9 2019

a. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Lời giải:

\(P=\frac{3x}{y+z}+\frac{4y}{x+z}+\frac{5z}{x+y}\)

\(\Rightarrow P+12=\frac{3x}{y+z}+3+\frac{4y}{x+z}+4+\frac{5z}{x+y}+5\)

\(=\frac{3(x+y+z)}{y+z}+\frac{4(x+y+z)}{x+z}+\frac{5(x+y+z)}{x+y}\)

\(=(x+y+z)\left(\frac{3}{y+z}+\frac{4}{x+z}+\frac{5}{x+y}\right)\)

\(\geq (x+y+z).\frac{(\sqrt{3}+\sqrt{4}+\sqrt{5})^2}{y+z+x+z+x+y}\) (BĐT Svac-xơ)

\(=\frac{(\sqrt{3}+2+\sqrt{5})^2}{2}\)

\(\Rightarrow P\geq \frac{(2+\sqrt{3}+\sqrt{5})^2}{2}-12\) (min)

Dấu bằng xảy ra khi \(\frac{\sqrt{3}}{y+z}=\frac{2}{x+z}=\frac{\sqrt{5}}{x+y}\)

6 tháng 3 2019

1/

\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{4x}{12}=\frac{5y}{20}=\frac{4x-5y}{-8}\) (1)

\(\frac{x}{3}=\frac{y}{4}=\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{25}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{4x-5y}{-8}=\frac{3x+4y}{25}\Rightarrow\frac{4x-5y}{3x+4y}=\frac{-8}{25}\)

2/

\(M-N=3x\left(x-y\right)-\left(y-x\right)\left(y+x\right)=\)

\(=3x\left(x-y\right)+\left(x-y\right)\left(y+x\right)=\left(x-y\right)\left(4x+y\right)\)

Mà \(x-y\) chia hết cho 11 nên \(M-N\) chia hết cho 11

5 tháng 9 2017

a) \(2x-5y=0\Rightarrow2x=5y\Rightarrow x=\dfrac{5y}{2}\Rightarrow x^2=\dfrac{25y^2}{4}\)

\(Min=x^2+y^2=\dfrac{25y^2}{4}+y^2=\left(\dfrac{25}{4}+1\right)y^2=\dfrac{29}{4}y^2\ge0\)

Đẳng thức khi \(y=0\Rightarrow x=0\)

\(\Rightarrow Min\left[x^2+y^2\right]=0\)

b) \(A=5y^4+7x-2z^5\)

Tại \(\left(x^2-1\right)+\left(y-z\right)^2=16\) xem lại đề

5 tháng 9 2017

TRONG BẢNG XẾP HẠNG CÓ NHIỀU NGƯỜI GIỎI LẮM MÀ SAO CỨ NHÀ MK HOÀI VẬY