Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)
\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)
\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)
Thay x-y+3=0 vào A
\(A=x^2.0-y.0+0-1=-1\)
b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)
\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)
Thay x-y+3=0 vào B
\(B=x^2.0-xy.0+2.0-2=-2\)
Cảm ơn bn nhìu!!!
phần b ko có vấn đề j hết á! Đúng đề mak:))
1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
= \(6xy^2+8xy+1\)
b, giá trị của biểu thức tại x = 1 và y = 2 là:
\(A=6.1.2^2+8.1.2+1=41\)
2) và 3) bạ vt khó hiểu wa
2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay
3)
a/ Có: \(4x+9=0\)
\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)
vậy.............
b/ Có: \(-5x+6=0\)
\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)
Vậy....................
c/ có: \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..................
d/ Có: \(9-x^2=0\)
\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy.............
e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)
Vậy...............
p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
=\(x^2+2xy+y^3\)
\(thếx=5;y=4\) \(ta\) \(có\)
= \(5^2+2.5.4+4^3\)
= 25 + 40 + 64
=129
b.
\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)
thế \(x=-1;y=-1\) ta có:
(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)
= 1 - 1.1 +1.1 - 1.1 +1.1
= 1-1+1-1+1
= 1
a)
\(x^3+x^2y+x^2-xy^2-y^3-y^2+2x+2y+3\\ =\left(x^3+x^2y+x^2\right)-\left(xy^2+y^3+y^2\right)+2x+2y+3\\ =x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+\left(x+y+1\right)+\left(x+y+1\right)+1\\ =\left(x+y+1\right)\left(x^2-y^2\right)+0+0+1\\ =0\left(x^2-y^2\right)+1\\ =0+1=1\)
b)
\(x^4y+x^3y^2+x^3y-x-y\\ =x^3y\left(x+y+1\right)-x-y\\ =x^3y\times0-x-y=0-x-y\\ =-x-y-1+1=-\left(x+y+1\right)+1\\ =-0+1=1\)
Bài 5:
a)
\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)
\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)
b)
\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)
\(=9+3-1-27=-18\)
Bài 7:
a)
\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)
Vậy đa thức có nghiệm $x=0; x=-2$
b)
\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy đa thức có nghiệm $x=0$
c)
\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)
Do đó đa thức vô nghiệm.
d)
\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)
Do đó đa thức vô nghiệm.
e)
\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)
Do đó đa thức vô nghiệm.
f)
\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)
\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)
Đa thức có nghiệm $x=1, x=-3$