Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán khi \(a=b=c=\frac{1}{3}\) khi đó \(P=\frac{19}{27}\) (gọi P=biểu thức đầu bài)
Ta đi chứng minh nó là GTNN của P
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\left(a^2+b^2+c^2\right)+4abc\ge\frac{19}{27}\left(a+b+c\right)^3\)
Khai triển và rút gọn, ta được BĐT tương đương là:
\(8\left(a^3+b^3+c^3\right)+24\left(a^2b+b^2c+c^2a\right)-30\left(ab^2+bc^2+ca^2\right)-6abc\ge0\)
\(\Leftrightarrow8\left(a+b+c\right)^3\ge54\left(ab^2+bc^2+ca^2+abc\right)\)
\(\Leftrightarrow ab^2+bc^2+ca^2+abc\le\frac{4}{27}\left(a+b+c\right)^3\)
BĐT trên đúng. Nên \(P_{Min}=\frac{19}{27}\Leftrightarrow a=b=c=\frac{1}{3}\)
đại khái giống Ngọc thôi, sửa 1 số lỗi
\(P=1-2\left(ab^2+bc^2+ca^2\right)-2abc\)
\(b=mid\left\{a;b;c\right\}\)\(\Rightarrow\)\(ab^2+ca^2\le a^2b+abc\)
\(\Rightarrow\)\(P\le1-2a^2b-2bc^2-4abc=1-2b\left(c+a\right)^2\le1-8\left(\frac{b+\frac{c+a}{2}+\frac{c+a}{2}}{3}\right)^3=\frac{19}{27}\)
ta có ab+bc+ca=(a+b+c)(ab+bc+ca)=(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc
=> a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=1-2(ab+bc+ca)=1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]
do đó P=2(a2b+b2c+c2a)+1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]+4abc
=1-2(ab2+bc2+ca2)
không mất tính tổng quát giả sử a =<b=<c. suy ra
a(a-b)(b-c) >=0 => (a2-a)(b-c) >=0
=> a2b-a2c-ab2+abc >=0 => ab2+ca2=< a2b+abc
do đó ab2+bc2+ca2+abc=(ab2+ca2)+bc2+abc =< (a2b+abc)+b2c+abc=b(a+c)2
với các số dương x,y,z ta luôn có: \(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\ge0\)
=> \(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\left(\frac{x+y+z}{3}\right)^2\)(*)
dấu "=" xảy ra khi và chỉ khi x=y=z
áp dụng bđt (*) ta có:
\(b\left(a+c\right)^2=ab\left(\frac{a+c}{2}\right)\left(\frac{a+c}{2}\right)\le4\left(\frac{b+\frac{a+c}{2}+\frac{a+c}{2}}{3}\right)^3=4\left(\frac{a+b+c}{3}\right)^3=\frac{4}{27}\)
=> P=1-2(ab2+bc2+ca2+abc) >= 1-2b(a+c)2 >= 1-2.4/27=19/27
vậy minP=19/27 khi x=y=z=1/3
Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)
Thật vậy, BĐT tương đương:
\(\left(81-108a\right)\left(2a-a^2\right)\le25\)
\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)
\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))
Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)
Cộng vế với vế:
\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)
\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)
Các biến không có biên, mà cực trị xảy ra tại tâm là max nên biểu thức này ko có min, bạn ko cần nghĩ cách tìm nó đâu
Câu 1/
Đặt cái cần tìm là \(P=x+y+z\)
Ta có \(5x^2+2xyz+4y^2+3z^2=60\)
\(\Rightarrow3z^2< 60\)
\(\Rightarrow0< z< 2\sqrt{5}\)
\(\Rightarrow\left\{{}\begin{matrix}20-z^2>0\\9-2z>0\\P-z>0\end{matrix}\right.\)
Thay \(x=P-y-z\) vào điều kiện ban đầu ta được.
\(5\left(P-y-z\right)^2+2yz\left(P-y-z\right)+4y^2+3z^2=60\)
\(\Leftrightarrow\left(9-2z\right)y^2-2\left(P-z\right)\left(5-z\right)y+5\left(P-z\right)^2+3\left(z^2-20\right)=0\)
Để PT theo nghiệm y có nghiệm thì
\(\Delta'=\left(P-z\right)^2\left(5-z\right)^2-\left(9-2z\right)\left[5\left(P-z\right)^2+3\left(z^2-20\right)\right]\ge0\)
\(\Leftrightarrow\left(z^2-20\right)\left[\left(P-z\right)^2+6z-27\right]\ge0\)
\(\Rightarrow\left(P-z\right)^2+6z-27\le0\)
\(\Rightarrow P\le z+\sqrt{27-6z}\le6\) (cái này chỉ cần chuyển z qua VP rồi bình phương 2 vế là thấy liền nhé.
Vậy \(MaxP=6\) khi \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Câu 3/ Dễ thấy a, b, c không thể đồng thời bằng 0 được.
Ta chứng minh: \(\left(a^2+b^2+c^2\right)^3\ge\left(a^3+b^3+c^3-3abc\right)^2\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(3a^2+3b^2+3c^2-2\left(ab+bc+ca\right)\right)\ge0\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+a^2+b^2+c^2\right]\ge0\) (đúng)
Từ đây ta suy ra \(a^2+b^2+c^2\ge1\)
Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1,0,0;0,1,0;0,0,1\right)\)
PS: Vì không chứng minh được \(x^2+y^2+z^2\ge1\) nên mình chứng minh \(a^2+b^2+c^2\ge1\) nhé.
\(VT-VP=\frac{\left(2bc+3a-5\right)^2}{3}+\frac{\left(6c+1\right)\left(c-1\right)^2}{2c+3}-\frac{\left(2bc+3b-5\right)^2\left(2c-3\right)}{3\left(2c+3\right)}\)
\(=\frac{\left(3a+3b-5\right)^2}{3}+\frac{\left(3c-5\right)^2}{3}+\frac{1}{3}+2ab\left(2c-3\right)\)
Từ 2 đẳng thức trên suy ra đpcm. (cái đầu đúng cho \(c\le\frac{3}{2}\), cái sau cho \(c\ge\frac{3}{2}\))
Và ta có thể viết SOS cho bài trên! Cách viết dựa trên dao lam, mời các bạn:)
Vì a + b + c = 3 nên theo nguyên lí Dirichlet: Tồn tại ít nhất hai số đồng thời không bé hơn 1 hoặc đồng thời không lớn hơn 1
Không mất tính tổng quát có thể g/s hai số đó là a và b
Khi đó ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)
<=> \(ab\ge a+b-1\)
<=> \(abc\ge ac+bc-c=ac+bc+c^2-c^2-c=c\left(a+b+c\right)-c^2-c=2c-c^2\)
Khi đó: \(3\left(a^2+b^2+c^2\right)+4abc\ge\frac{3\left(a+b\right)^2}{2}+3c^2+8c-4c^2=\frac{3\left(3-c\right)^2}{2}-c^2+8c\)
\(=\frac{1}{2}c^2-c+\frac{27}{2}=\frac{1}{2}\left(c^2-2c+1\right)-\frac{1}{2}+\frac{27}{2}=\frac{7}{2}\left(c-1\right)^2+13\ge13\)
Dấu "=" xảy ra <=> a = b = c = 1/