Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )
\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)
\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Ta có : hoặc a+b =0
hoặc b+c =0
hoặc c+a = 0
Mà \(a+b+c=2017\)
\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017
Vậy ...
Sửa lại đề: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}$.
--------------
Lời giải:
\(\left\{\begin{matrix} a+b+c=2021\\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Leftrightarrow (a+b)(b+c)(c+a)=0\)
$\Leftrightarrow (2021-c)(2021-a)(2021-b)=0$
Do đó ít nhất 1 trong 3 số $a,b,c$ có 1 số có giá trị bằng $2021$
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+bc^2+ac^2=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow....\)
Câu hỏi của Nguyễn Đa Vít - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo phần sau tại link trên.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2018}\Leftrightarrow2018\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Mà a + b + c = 2018
=> c = 2018 hoặc a = 2018 hoặc b = 2018 (đpcm)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2018}\Leftrightarrow2018\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Mà \(a+b+c=2018\)
\(\Rightarrow a=2018\)hoặc \(b=2018\)hoặc \(c=2018\)
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự nhé!
Em tham khảo cách làm tương tự như link dưới:
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm như link trên!
Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)
=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)
=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)
Khi b - a = 0
=> (b - a)(a - c)(b + c) = 0 (1)
Khi b - a \(\ne0\)
=> ab = -(a - b - c).c
=> ab = -ac + bc + c2
=> ab + ac - bc - c2 = 0
=> a(b + c) - c(b + c) = 0
=> (a - c)(b + c) = 0
=> (b - a)(a - c)(b + c) = 0 (2)
Từ (1)(2) => (b - a)(a - c)(b + c) = 0
=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0
=> a = b hoặc a = c hoặc b = -c
Vậy tồn tại 2 số bằng nhau hoặc đối nhau