Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: a) Xét t/giác ABH và t/giác DBE
có: \(\widehat{AHB}=\widehat{DEB}=90^0\) (gt)
AB = BD (gt)
\(\widehat{ABH}=\widehat{EBD}\) (đối đỉnh)
=> t/giác ABH = t/giác DBE (ch - gn)
=> BE = BH (2 cạnh t/ứng)
b) Xét t/giác ABE và t/giác DBH
có: AB = BD (gt)
\(\widehat{ABE}=\widehat{HBD}\) (đối đỉnh)
EB = BH (cmt)
=> t/giác ABE = t/giác DBH (c.g.c)
=> \(\widehat{AEB}=\widehat{BHD}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AE // DH (Đpcm)
c) Ta có: AB + BD = AD
=> AD = 2.AB = 2.3 = 6 (cm) (vì AB = BD)
Áp dụng bất đẳng thức t/giác , ta có:
|AD - AC| < CD < |AD + AC|
=> |6 - 3| < CD < |6 + 3|
=> |3| < CD < |9|
=> 3 < CD < 9
=> CD \(\in\){4; 5; 6; 7; 8}
a/ H và D đối xứng nhau qua AB => Góc PAD = góc PAH
H và E đối xứng nhau qua AC => Góc QAE = góc QAH
=> Tổng 4 góc: góc PAD + góc PAH + góc HAQ + góc QAE = 2 (góc PAH + góc HAQ) = 2. 90 = 180o
=> Góc DAE = 180o => D, A, E thẳng hàng
b/ Trong tam giác HED có QP là đường trung bình => QP // ED, và QD = 1/2 ED
c/ APHQ là hình chữ nhật (có 3 góc vuông, góc thứ tư = 360 - 3.90 = 90, cũng vuông)
=> Hai đường chéo AH và PQ bằng nhau
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.
a: \(AB=\sqrt{AH^2+HB^2}=3\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=2\sqrt{13}\left(cm\right)\)
b: XétΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A