\(\perp\) AC và t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(1)

Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)

hay E,A,D thẳng hàng

b: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//DE

c: Xét ΔAHB và ΔADB có 

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

hay BD\(\perp\)ED(3)

Xét ΔAHC và ΔAEC có 

AH=AE
\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

hay CE\(\perp\)DE(4)

Từ (3) và (4) suy ra BD//CE

 

a: Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(1)

Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)

hay E,A,D thẳng hàng

b: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//DE

c: Xét ΔAHB và ΔADB có 

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

hay BD\(\perp\)ED(3)

Xét ΔAHC và ΔAEC có 

AH=AE
\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

hay CE\(\perp\)DE(4)

Từ (3) và (4) suy ra BD//CE

 

a: \(\widehat{FDE}=360^0-120^0-90^0-90^0=60^0\)

Xét ΔAED vuông tại E và ΔAFD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

Suy ra: DE=DF và AE=AF

Xét ΔDEF có DE=DF

nên ΔDEF cân tại D

mà \(\widehat{FDE}=60^0\)

nên ΔDEF đều

b: Xét ΔADK và ΔADI có 

AK=AI

\(\widehat{KAD}=\widehat{IAD}\)

AD chung

Do đó:ΔADK=ΔADI

Suy ra: DK=DI

hay ΔDKI cân tại D

13 tháng 7 2016

Toán lớp 8

4 tháng 6 2017

có chỗ mik xem k rõ

17 tháng 8 2016

a) Ta có : \(5^2=3^2+4^2\) hay \(BC^2=AB^2+AC^2\)

áp dụng đ/l Pytago đảo ta có ABC là tam giác vuông tại A

b) \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)

\(BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\) 

\(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\) 

Dễ dàng cm được HDAE là hình chữ nhật

=> HD // AC , HE // AB

Áp dụng đl Ta let : \(\frac{HD}{AC}=\frac{HB}{BC}\Rightarrow HD=\frac{AC.BH}{BC}=\frac{\frac{4.9}{5}}{5}=\frac{36}{5}\)

\(HE=\sqrt{AH^2-HD^2}=\frac{48}{25}\)