Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)
hay E,A,D thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//DE
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay BD\(\perp\)ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)DE(4)
Từ (3) và (4) suy ra BD//CE
a: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)
hay E,A,D thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//DE
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay BD\(\perp\)ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)DE(4)
Từ (3) và (4) suy ra BD//CE
a: \(\widehat{FDE}=360^0-120^0-90^0-90^0=60^0\)
Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
Suy ra: DE=DF và AE=AF
Xét ΔDEF có DE=DF
nên ΔDEF cân tại D
mà \(\widehat{FDE}=60^0\)
nên ΔDEF đều
b: Xét ΔADK và ΔADI có
AK=AI
\(\widehat{KAD}=\widehat{IAD}\)
AD chung
Do đó:ΔADK=ΔADI
Suy ra: DK=DI
hay ΔDKI cân tại D
a) Ta có : \(5^2=3^2+4^2\) hay \(BC^2=AB^2+AC^2\)
áp dụng đ/l Pytago đảo ta có ABC là tam giác vuông tại A
b) \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)
\(BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\)
\(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\)
Dễ dàng cm được HDAE là hình chữ nhật
=> HD // AC , HE // AB
Áp dụng đl Ta let : \(\frac{HD}{AC}=\frac{HB}{BC}\Rightarrow HD=\frac{AC.BH}{BC}=\frac{\frac{4.9}{5}}{5}=\frac{36}{5}\)
\(HE=\sqrt{AH^2-HD^2}=\frac{48}{25}\)