K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(1)

Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)

hay E,A,D thẳng hàng

b: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//DE

c: Xét ΔAHB và ΔADB có 

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

hay BD\(\perp\)ED(3)

Xét ΔAHC và ΔAEC có 

AH=AE
\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

hay CE\(\perp\)DE(4)

Từ (3) và (4) suy ra BD//CE

 

a: Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(1)

Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)

hay E,A,D thẳng hàng

b: Xét ΔHED có 

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//DE

c: Xét ΔAHB và ΔADB có 

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

hay BD\(\perp\)ED(3)

Xét ΔAHC và ΔAEC có 

AH=AE
\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

hay CE\(\perp\)DE(4)

Từ (3) và (4) suy ra BD//CE

 

Giúp với Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE a) Chứng minh tam giác ABD đồng dạng tam giác ACE b) Chứng minh tam giác ADE đồng dạng tam giác ABC c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2 Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC b) Chứng...
Đọc tiếp

Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK

0
11 tháng 6 2020

bài này ra là 
a 91cm
B ko bt
C 54
 50%
100% S

a: ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CH=8^2/10=6,4cm

26 tháng 11 2022

a: Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

Xét tứ giác AMNE có

NE//AM

NE=AM

Do đó: AMNE là hình bình hành

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)
Xét ΔAHE có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tai A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: BD^2+CE^2+2*BH*HC

=BH^2+CH^2+2*BH*HC

=(BH+CH)^2=BC^2