Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
bạn chứng minh tam giác MBC = tam giác MB'A ( cgc) =>BC=AB' (1)
chứng minh tiếp tâm giác NBC= tam giác NAC' ( cgc) => BC= AC' (2)
từ 1và 2 => BC=AB'=AC'
Vì tam giác MBC=tam giác MB'A nên góc MAB= góc MCB=> BC//AB'
vì tâm giác NBC= tam giác NAC' nên góc NAC' = góc NBC => BC// AC'
tam giác NBC' = tam giác NAC( cgc) =>góc NC'B= góc NCA => BC'//AC
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
gọi M,N,P lần lượt là các trung điểm nha , mình ghi thiếu nha !