K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

\(\dfrac{2x}{x^2+1}\ge1\Leftrightarrow2x\ge x^2+1\Leftrightarrow x^2-2x+1\le0\\ \Leftrightarrow\left(x-1\right)^2\le0\)

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(A=\left\{1\right\}\)

Để \(x^2-2bx+4=0\Leftrightarrow\Delta=4b^2-4\cdot4< 0\)

\(\Leftrightarrow b^2-4< 0\Leftrightarrow\left(b-2\right)\left(b+2\right)< 0\\ \Leftrightarrow x\le-2;x\ge2\)

\(\Leftrightarrow B=\left\{x\in R|x\le-2;x\ge2\right\}\)

Vậy \(A\cap B=\varnothing\)

26 tháng 10 2023

sai bạn ơi phải là -2<b<2

 

23 tháng 9 2023

\(\left\{{}\begin{matrix}A=\left(2;+\infty\right)\\B=\left(m^2-7;+\infty\right)\end{matrix}\right.\) \(\left(m>0\right)\)

Để \(A\)\\(B\) là 1 khoảng có độ dài bằng 6

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7>2\\m^2-7-2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>9\\m^2=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\cup m< -3\\m=5\cup m=-5\end{matrix}\right.\)

\(\Leftrightarrow m=5\cup m=-5\) thỏa mãn điều kiện đề bài

13 tháng 9 2020

Có:  nA + nB = n(A hợp B) + n(A giao B)

=> nA + nB = 7 + nB/2

=> 2nA + nB = 14

Vì n(A giao B) = nB/2 nên nA > nB/2 => 2nA > nB => 14 > 2nB => nB < 7

Mà nB/2 là số tự nhiên nên nB là số chẵn 

\(\Rightarrow\left(nA,nB\right)=\left(7;0\right),\left(6;2\right),\left(5;4\right),\left(4;6\right)\)

Lúc này n(A giao B) lần lượt là 0; 1; 2; 3 ---> thỏa đề