Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: nA + nB = n(A hợp B) + n(A giao B)
=> nA + nB = 7 + nB/2
=> 2nA + nB = 14
Vì n(A giao B) = nB/2 nên nA > nB/2 => 2nA > nB => 14 > 2nB => nB < 7
Mà nB/2 là số tự nhiên nên nB là số chẵn
\(\Rightarrow\left(nA,nB\right)=\left(7;0\right),\left(6;2\right),\left(5;4\right),\left(4;6\right)\)
Lúc này n(A giao B) lần lượt là 0; 1; 2; 3 ---> thỏa đề
Lời giải:
Ta sử dụng công thức sau:
$|A\cup B|=|A|+|B|-|A\cap B|$. Theo đề bài:
$|A\cup B|=7$
$|A\cap B|=\frac{|B|}{2}$
Do đó: $7=|A|+2|A\cap B|-|A\cap B|=|A|+|A\cap B|$
Mà $|A|\geq |A\cap B|$ nên $7\geq 2|A\cap B|\Rightarrow |A\cap B|\leq 3,5$. Ta xét các TH sau:
$|A\cap B|=3\Rightarrow |A|=4; |B|=6$
$|A\cap B|=2\Rightarrow |A|=5; |B|=4$
$|A\cap B|=1\Rightarrow |A|=6, |B|=2$
$|A\cap B|=0$ thì $|A|=7; |B|=0$
a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{ - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)
b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)
c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)
d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)