Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-y\)
+x<y => A<0
+ x>/ y =>\(A^2=\left(x-y\right)^2=\left(1.x+1.\left(-y\right)\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=\frac{2.2025}{2}\)
\(A\le45\)
=> Max \(A=45\) => x = -y => 4 x2 = 2025 => x =-y = 45/2
Vậy x =45/2 ; y =-45/2
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015
2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015
2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015
2(1-1/x+1)=4028/2015
1-1/x+1=2014/2015
(x+1-1)/x+1=2014/2015
x/x+1=2014/2015
(x+1).2014=2015x
2014x-2015x=-2014
-x=-2014
x=2014
Bạn may đấy...
----------------
Ta có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
nên \(2025\ge\left(x+y\right)^2\) (do \(2\left(x^2+y^2\right)=2025\))
\(\Leftrightarrow\) \(\sqrt{2025}\ge x+y\)
\(\Leftrightarrow\) \(45\ge x+y\) với mọi \(x;y\)
Vậy, Giá trị lớn nhất của \(x+y\) là \(45\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
khó lắm bạn tôi làm vòng 10 có 280đ thôi chắc không đậu cấp trường