Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó lắm bạn tôi làm vòng 10 có 280đ thôi chắc không đậu cấp trường
2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015
2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015
2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015
2(1-1/x+1)=4028/2015
1-1/x+1=2014/2015
(x+1-1)/x+1=2014/2015
x/x+1=2014/2015
(x+1).2014=2015x
2014x-2015x=-2014
-x=-2014
x=2014
Ta có \(x^2+y^2+xy+x=y-1\)
\(\Leftrightarrow2x^2+2y^2+2xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\Rightarrow B=\left(-1+1-1\right)^{2023}\) \(=\left(-1\right)^{2023}\) \(=-1\)
Bạn may đấy...
----------------
Ta có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
nên \(2025\ge\left(x+y\right)^2\) (do \(2\left(x^2+y^2\right)=2025\))
\(\Leftrightarrow\) \(\sqrt{2025}\ge x+y\)
\(\Leftrightarrow\) \(45\ge x+y\) với mọi \(x;y\)
Vậy, Giá trị lớn nhất của \(x+y\) là \(45\)
vay lam sao ra dc vay