Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)
Xét:
+) x+y >/ 10
+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y
+) 25/x + x >/ 2. căn 25/x.x =10
=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).
\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)
\(A_{min}=22\) khi \(x=y=5\)
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Ta có :
\(Q=\left(2x^2+\dfrac{2}{x^2}\right)+\left(3y^2+\dfrac{3}{y^2}\right)+\left(\dfrac{4}{x^2}+\dfrac{5}{y^2}\right)\ge2.2+2.3+9=19\)
Dấu "=" xảy ra khi x=y=1
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
Bạn tham khảo:
Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)
\(\ge2.6+2+\dfrac{4}{5}.10=22\)
Vậy GTNN là P = 22 khi x = y = 5
\(3x^2+2y^2=5xy\)
\(\Leftrightarrow3x^2+2y^2-5xy=0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)
\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)
\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S
\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
\(P=\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge\dfrac{4}{5}.10+2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}=22\)
\(P_{min}=22\) khi \(x=y=5\)