K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)

----------------------------------------

\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)

------------------------------------------

\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

26 tháng 12 2021

a: \(=\dfrac{x-z}{2}\)

b: \(=\dfrac{3x}{4y^3}\)

4 tháng 1 2021

a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)   = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)  =\(\dfrac{x+y}{4}\) 

a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)

\(=\dfrac{x+y}{4}\)

b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}\)

2 tháng 12 2017

1) a) \(\dfrac{x^2-y^2}{x^3}+y^{^3}.\left(\dfrac{xy-x^2-y^2}{y}.\dfrac{xy}{y-x}\right)\)

\(=\dfrac{x^2-y^2}{x^3}+y^3.\dfrac{x\left(xy-x^2-y^2\right)}{y-x}\)

\(=\dfrac{x^2-y^2}{x^3}+\dfrac{xy^3\left(xy-x^2-y^2\right)}{y-x}\)

\(=\dfrac{-\left(x-y\right)^2\left(x+y\right)+xy^3\left(xy-x^2-y^2\right)}{x^3\left(y-x\right)}\)

Cậu tự thu gọn nốt nhé , tớ sắp đi hok

2 tháng 12 2017

Bài 2 . Theo giả thiết : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

=> \(\left(x+y+z\right)\left(yz+zx+xy\right)=xyz\)

=>\(x\left(yz+xz+xy\right)+y\left(yz+xz+xy\right)+z\left(yz+xz+xy\right)-xyz=0\)=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

Ta có :

* x = - y

* y = -z

* x = -z

Áp dụng đều này vào phân thức cần CM , ta có :

TH1 . x = -y

\(\dfrac{1}{\left(-y\right)^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{\left(-y\right)^5+y^5+z^5}\)

=> \(\dfrac{1}{z^5}=\dfrac{1}{z^5}\), luôn đúng

Tương tự thử với các trường hợp còn lại ta cũng sẽ có được đpcm

6 tháng 10 2021

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)

c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)

<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)

Xét:

+) x+y >/ 10

+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y

+) 25/x + x >/ 2. căn 25/x.x =10

=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).

 

NV
10 tháng 3 2021

\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)

\(A_{min}=22\) khi \(x=y=5\)

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(

11 tháng 7 2023

a) \(\left(\dfrac{x^2}{2}+y^2\right)^2\)

\(=\left(\dfrac{1}{2}x^2+y^2\right)^2\)

\(=\left(\dfrac{1}{2}x^2\right)^2+2\cdot\dfrac{1}{2}x^2\cdot y^2+\left(y^2\right)^2\)

\(=\dfrac{1}{4}x^4+x^2y^2+y^4\)

b) \(\left(\dfrac{4}{5}x^2-\dfrac{2}{3}y\right)^2\)

\(=\left(\dfrac{4}{5}x^2\right)^2-2\cdot\dfrac{4}{5}x^2\cdot\dfrac{2}{3}y+\left(\dfrac{2}{3}y\right)^2\)

\(=\dfrac{16}{25}x^4-\dfrac{16}{15}x^2y+\dfrac{4}{9}y^2\)

c) \(\left(2x+\dfrac{1}{2}\right)\left(2x-\dfrac{1}{2}\right)\)

\(=\left(2x\right)^2-\left(\dfrac{1}{2}\right)^2\)

\(=4x^2-\dfrac{1}{4}\)

a: (1/2x^2+y^2)^2

=(1/2x^2)^2+2*1/2x^2*y^2+y^4

=1/4x^4+x^2y^2+y^4

b: (4/5x^2-2/3y)^2

=(4/5x^2)^2-2*4/5x^2*2/3y+4/9y^2

=16/25x^4-16/15x^2y+4/9y^2

c: =(2x)^2-(1/2)^2

=4x^2-1/4