Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
Áp dụng bất đẳng thức Cô - si cho 2 số không âm
\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\left(1\right)\)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)
Theo đề bài ta có : \(x+y\ge10\) suy ra
\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\left(3\right)\)
Cộng (1) ; (2) và (3) vế với vế ta được :
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)
Dấu " = " xay ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=25\\y^2=25\end{matrix}\right.\)
Vì x ; y dương nên \(\left(x;y\right)=\left(5;5\right)\)
Bài 2 :
Đặt \(x=a+b=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow x^3=2+\sqrt{5}+2-\sqrt{5}+\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.x\)
\(\Leftrightarrow x^3=4+\sqrt[3]{4-5}.x\)
\(\Leftrightarrow x^3=4-3x\)
\(\Leftrightarrow x^3+3x-4=0\)
\(\Leftrightarrow x^3-x^2+x^2-x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)
Vì \(x^2+x+4=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)
Nên \(x-1=0\Leftrightarrow x=1\)
Vậy \(x=a+b=1\)
\(\Rightarrow\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\left(đpcm\right)\)
Chúc bạn học tốt !!
Dự đoán dấu "=" khi x = 2 ; y= 1
Áp dụng bđt Cô-si cho 3 số và bđt \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) ta được
\(P=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)
\(=\left(\frac{7x^2}{4}+\frac{14}{x}+\frac{14}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{2y}+\frac{1}{2y}\right)+\left(\frac{x^2}{4}+\frac{y^2}{2}\right)\)
\(\ge3\sqrt[3]{\frac{7x^2.14.14}{4.x^2}}+3\sqrt[3]{\frac{y^2.1.1}{2.2y.2y}}+\frac{\left(x+y\right)^2}{4+2}\)
\(=3.\sqrt[3]{\frac{7.14.14}{4}}+\frac{3}{\sqrt[3]{2^3}}+\frac{3^2}{6}=24\)
Dấu "=" khi x = 2 ; y = 1
Bài toán easy!
\(P=\left(2x^2+8\right)+\left(y^2+1\right)+\frac{28}{x}+\frac{1}{y}-9\)
Áp dụng BĐT AM-GM,ta có:
\(P\ge8x+2y+\frac{28}{x}+\frac{1}{y}-9\)
\(=\left(7x+\frac{28}{x}\right)+\left(y+\frac{1}{y}\right)+\left(x+y\right)-9\)
\(\ge2\sqrt{7x.\frac{28}{x}}+2\sqrt{y.\frac{1}{y}}+\left(x+y\right)-9\)
\(\ge28+2+3-9=24\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x^2=8\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=24\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)
Giải
\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)
\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)
Do đó
\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))
Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+\left(\frac{x}{4y}+\frac{y}{x}-2\right)\)
Áp dụng BĐT Cô - Si cho các số dương :
\(\frac{x}{4y}+\frac{y}{x}\ge2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\ge\frac{7.2y}{4y}=\frac{7}{2}\) do \(x\ge2y\)
Do đó : \(P\ge\frac{7}{2}+1-2=\frac{5}{2}\)
Vậy \(P_{min}=\frac{5}{2}\) khi x\(=2y\)
Chúc bạn học tốt !!!
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
Áp dụng bất đẳng thức cô-si cho hai số không âm
\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\) (1)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\) (2)
Theo đề \(x+y\ge10\) suy ra
\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\) (2)
Cộng (1); (2) ; (3) vế theo vế ta được:
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{cases}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\end{cases}}}\)
Vì x;y dương nên (x;y) = (5;5)
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(\Leftrightarrow P=0,8\left(x+y\right)+\left(1,2x+\frac{30}{x}\right)+\left(0,2y+\frac{5}{y}\right)\)
Áp dụng BĐT AM-GM ta có:
\(P\ge0,8\left(x+y\right)+2.\sqrt{1,2x.\frac{30}{x}}+2.\sqrt{0,2y.\frac{5}{y}}=8+12+2=22\)
Dấu " = " xảy ra <=> x=y=5
Vậy \(P_{min}=22\Leftrightarrow x=y=5\)