Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+a+b+c=2+2018\)
\(\Leftrightarrow\frac{a+ab+bc}{b+c}+\frac{b+bc+ab}{c+a}+\frac{c+ac+bc}{a+b}=2020\)
\(\Leftrightarrow a\left(\frac{1+b+c}{b+c}\right)+b\left(\frac{1+a+c}{a+c}\right)+c\left(\frac{1+a+b}{a+b}\right)=2020\left(1\right)\)
Vì \(a+b+c=2018\Rightarrow\hept{\begin{cases}a+b=2018-c\\b+c=2018-a\\c+a=2018-b\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(a\left(\frac{2019-a}{b+c}\right)+b\left(\frac{2019-b}{a+c}\right)+c\left(\frac{2019-c}{a+b}\right)=2020\)
\(\Leftrightarrow\frac{2019a-a^2}{b+c}+\frac{2019b-b^2}{a+c}+\frac{2019c-c^2}{a+b}=2020\)
\(\Leftrightarrow\frac{2019a}{b+c}-\frac{a^2}{b+c}+\frac{2019b}{a+c}-\frac{b^2}{a+c}+\frac{2019c}{a+b}-\frac{c^2}{a+b}=2020\)
\(\Leftrightarrow2019\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)
\(\Leftrightarrow4038-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)( vì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\))
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=2018\)
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1=2019\)
Ta có
\(4a^2+b^2=5ab\)
\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)
\(TH1:a=b\)
\(\Leftrightarrow\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
\(TH2:4a=b\)
\(\Leftrightarrow\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
Vậy...............
k mk nha
Nhân 2 vế của 2 ĐT đề bài ta có
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)
<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)
=>\(P=\frac{17}{10}\)
Vậy \(P=\frac{17}{10}\)
Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+ TH1 : a + b + c = 0 ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)
\(=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
+ TH2 : \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Khi đó : \(A=\left(1+1\right)\cdot\left(1+1\right)\cdot\left(1+1\right)=8\)
Có \(a^2-2ab+b^2=\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)>\left(a+b\right)^2\)
Mà \(a^2+b^2=a+b\Rightarrow2\left(a+b\right)\ge\left(a+b\right)^2\Rightarrow a+b\le2\)
Lại có : \(S=\frac{a}{a+1}+\frac{b}{b+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Áp dụng bất đẳng thức Svac - sơ ta có :
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}=\frac{4}{a+b+2}\ge1\)
Vì vậy S = \(2-\left(\frac{a}{a+1}+\frac{b}{b+1}\right)\le2-1=1\)
=> Smax =1
Dấu = xảy ra khi a = b = 1