Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Ta có \(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)
dấu = xảy ra <=> a=b=\(\sqrt{2}\)
Áp dụng BĐT Minkowski, ta có:
\(A\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(A\ge\sqrt{6^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{6^2+\left(\dfrac{9}{6}\right)^2}=\dfrac{3\sqrt{17}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=2\)
\(Q=a+b+\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow Q=\left(\dfrac{1}{a}+4a\right)+\left(\dfrac{1}{b}+4b\right)-3\left(a+b\right)\)
Áp dụng BĐT Cô si ta được :
\(Q\ge4+4-3\left(a+b\right)\ge4+4-3=5\)
Vậy GTNN của Q là 5. Dấu "=" xảy ra khi và chỉ khi \(a=b=\dfrac{1}{2}\)
\(A=\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(A\ge\dfrac{4}{\left(a+b\right)c}=\dfrac{4}{\left(1-c\right)c}\ge\dfrac{4}{\dfrac{1}{4}}=16\)
Dấu bằng xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}a=b=\dfrac{1}{4}\\c=\dfrac{1}{2}\end{matrix}\right.\)
Vậy.......
Ta có : \(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
Do \(\left(a+b+c\right)^2\ge4\left(a+b\right).c\) ( áp dụng BĐT Cô - si )
\(\Rightarrow1\ge4\left(a+b\right)c\)
\(A=\dfrac{a+b}{abc}=\dfrac{\left(a+b\right).1}{abc}\ge\dfrac{\left(a+b\right).4\left(a+b\right)c}{abc}=\dfrac{4\left(a+b\right)^2.c}{abc}\ge\dfrac{4.4ab.c}{abc}=16\)
Dấu " = " xảy ra \(\Leftrightarrow a+b=c;a=b;a+b+c=1\)
\(\Leftrightarrow a=b=\dfrac{1}{4};c=\dfrac{1}{2}\)
Vậy ...
Lời giải:
Đặt \(\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)\)
Khi đó: \(xy=b^2; yz=c^2; xz=a^2\). Bài toán trở về dạng:
Cho $x,y,z>0$ thỏa mãn: \(xy+yz+xz=1\)
Tìm GTNN của \(P=x+y+z\)
Thật vậy: Ta đã biết một BĐT quen thuộc theo AM-GM là:
\((x+y+z)^2\geq 3(xy+yz+xz)\)
\(\Rightarrow x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)
Vậy \(P_{\min}=\sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)