\(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức:<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Đặt \(\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)\)

Khi đó: \(xy=b^2; yz=c^2; xz=a^2\). Bài toán trở về dạng:

Cho $x,y,z>0$ thỏa mãn: \(xy+yz+xz=1\)

Tìm GTNN của \(P=x+y+z\)

Thật vậy: Ta đã biết một BĐT quen thuộc theo AM-GM là:

\((x+y+z)^2\geq 3(xy+yz+xz)\)

\(\Rightarrow x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

30 tháng 12 2018

\(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\le\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\le\dfrac{2}{3}\left[\left(a+b+c\right)-\dfrac{a+b+c}{2}\right]=\dfrac{2}{3}\left(2019-\dfrac{2019}{2}\right)=673\)

1 tháng 1 2019

Bạn ơi đề bảo tìm giá trị nhỏ nhất cơ mà

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Lời giải:

Ta có: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)

\(\Rightarrow (\sqrt{a-c}+\sqrt{b-c})^2=a+b\)

\(\Leftrightarrow a-c+b-c+2\sqrt{(a-c)(b-c)}=a+b\)

\(\Leftrightarrow \sqrt{(a-c)(b-c)}=c\)

Bình phương hai vế: \(c^2=(a-c)(b-c)\)

\(\Leftrightarrow ab=ac+bc(*)\)

----------------------------

Ta có: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}-\frac{ab}{c^2}\)

\(P=\frac{(bc)^3+(ac)^3-(ab)^3}{(abc)^2}\)

Xét tử số kết hợp với $(*)$

\((bc)^3+(ac)^3-(ab)^3=(bc+ac)^3-3bc.ac(bc+ac)-(ab)^3\)

\(=(ab)^3-3bc.ac.ab-(ab)^3=-3(abc)^2\)

Do đó: \(P=\frac{-3(abc)^2}{(abc)^2}=-3\)

23 tháng 1 2017

i don't no TT

mình chưa học tới 

22 tháng 9 2019

Áp dụng BĐT AM-GM (Cô si): \(A\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(=3\sqrt[3]{\frac{1}{a\left(b+c\right).b\left(c+a\right).c\left(a+b\right)}}=\frac{3}{\sqrt[3]{\left(ab+ca\right)\left(bc+ab\right)\left(ca+bc\right)}}\)

\(\ge\frac{9}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

P/s: Check giúp em xem có ngược dấu không:v

22 tháng 9 2019

Cach khac 

Dat \(\left(ab;bc;ca\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x^2+y^2+z^2\ge3\\xyz\le1\end{cases}}\)

Ta co:

\(A=\frac{1}{ab+b^2}+\frac{1}{bc+c^2}+\frac{1}{ca+a^2}\)

\(=\frac{1}{x+\frac{xy}{z}}+\frac{1}{y+\frac{yz}{x}}+\frac{1}{z+\frac{zx}{y}}\ge\frac{9}{3+xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dau '=' xay ra khi \(a=b=c=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(a=b=c=1\)

26 tháng 4 2020

Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)

Áp dụng BĐT tương tự ta được đẳng thức

\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)

Áp dụng BĐT Cauchy ta lại có

\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)

Cộng theo vế ta được

\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)

Vậy MinP=\(\frac{3}{2}\)

26 tháng 4 2020

phần áp dụng BĐT lần 2 mình chưa hiều lắm