Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).
Áp dụng BĐT (*) vào bài toán, ta có:
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)
\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)
\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)
Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)
Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)
Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)
M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)
\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)
dấu "=" xảy ra khi và chỉ khi a=b=1
Vì a ; b dương , áp dụng BĐT Cauchy cho 2 số dương , ta có :
\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow ab\le1\)
Áp dụng BĐT Cauchy cho 2 số , ta có :
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\ge\frac{\left(a^2+b^2\right)^2}{2016a^2+2017ab+2017ab+2016b^2}=\frac{4}{2016\left(a^2+b^2\right)+4034ab}\)
\(\ge\frac{4}{2016.2+4034.1}=\frac{4}{8066}=\frac{2}{4033}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)
\(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}=\dfrac{4}{4032+4034ab}\)
AM-GM: \(a^2+b^2\ge2ab\Leftrightarrow2ab\le2\Leftrightarrow ab\le1\Leftrightarrow4034ab\le4034\)
Hay: \(M\ge\dfrac{4}{4032+4034}=\dfrac{4}{8066}=\dfrac{2}{4033}\)
Áp dụng BĐT Cô - Si cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab=2\) ( Đẳng thức xảy ra khi a = b = 1 )
Do đó : \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\) ≥ \(2\left(a+b+1\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+2\left(a+b\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+\left(a+b\right)+\left[\left(a+b\right)+\dfrac{4}{a+b}\right]\)
⇔ \(A\) ≥ \(2+2\sqrt{ab}+2\sqrt{\left(a+b\right).\dfrac{4}{a+b}}=2+2+2\sqrt{4}=8\)
⇒ \(A_{Min}=8\) ⇔ a = b = 1
a ) \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Do \(a^2\ge0;b^2\ge0;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )
Thay * vào biểu thức M , ta được :
\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)
\(=-1^{1999}+0+1^{2001}\)
\(=-1+0+1\)
\(=0\)
Vậy \(M=0\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)
\(\Leftrightarrow bc+ac+ab-1=0\)
\(\Leftrightarrow bc+ac+ab=1\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)
\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)
\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Mà \(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)
\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)
\(\Rightarrow P=1+1+1=3\)
Vậy \(P=3\)
Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y
⇒ x2 + y2 ≥ 2xy
Ta có : a2 + b2 ≥ 2ab ( *)
b2 + c2 ≥ 2bc (**)
c2 + a2 ≥ 2ac (***)
Cộng từng vế của ( *;**;***) , ta có :
2( a2 + b2 + c2) ≥ 2( ab + bc + ac)
⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{3}{4}\)
Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)
Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)
\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)
\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)
\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)
\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> đpcm
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\) (Theo BĐT cô si;a,b dương)
\(\Leftrightarrow2\ge2ab\Rightarrow ab\le1\) (Vì \(a^2+b^2=2\))
\(\Rightarrow4034ab\le4034\Rightarrow4032+4034ab\le8066\) (1)
Lại có: \(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}\)
\(\Leftrightarrow M=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\) (2)
Áp dụng bất đẳng thức cô si dạng engel vào (2) được:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016a^2+2017ab+2017ab+2016b^2}=\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)
\(\Leftrightarrow M\ge\dfrac{2^2}{2016\cdot2+4034ab}=\dfrac{4}{4032+4034ab}\) ( vì \(a^2+b^2=2\)) (3)
Từ (1);(3)\(\Rightarrow M\ge\dfrac{4}{8066}=\dfrac{2}{4033}\)
Vậy min \(M=\dfrac{2}{4033}\) khi a=b=1