Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a ; b dương , áp dụng BĐT Cauchy cho 2 số dương , ta có :
\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow ab\le1\)
Áp dụng BĐT Cauchy cho 2 số , ta có :
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\ge\frac{\left(a^2+b^2\right)^2}{2016a^2+2017ab+2017ab+2016b^2}=\frac{4}{2016\left(a^2+b^2\right)+4034ab}\)
\(\ge\frac{4}{2016.2+4034.1}=\frac{4}{8066}=\frac{2}{4033}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\) (Theo BĐT cô si;a,b dương)
\(\Leftrightarrow2\ge2ab\Rightarrow ab\le1\) (Vì \(a^2+b^2=2\))
\(\Rightarrow4034ab\le4034\Rightarrow4032+4034ab\le8066\) (1)
Lại có: \(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}\)
\(\Leftrightarrow M=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\) (2)
Áp dụng bất đẳng thức cô si dạng engel vào (2) được:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016a^2+2017ab+2017ab+2016b^2}=\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)
\(\Leftrightarrow M\ge\dfrac{2^2}{2016\cdot2+4034ab}=\dfrac{4}{4032+4034ab}\) ( vì \(a^2+b^2=2\)) (3)
Từ (1);(3)\(\Rightarrow M\ge\dfrac{4}{8066}=\dfrac{2}{4033}\)
Vậy min \(M=\dfrac{2}{4033}\) khi a=b=1
\(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}=\dfrac{4}{4032+4034ab}\)
AM-GM: \(a^2+b^2\ge2ab\Leftrightarrow2ab\le2\Leftrightarrow ab\le1\Leftrightarrow4034ab\le4034\)
Hay: \(M\ge\dfrac{4}{4032+4034}=\dfrac{4}{8066}=\dfrac{2}{4033}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c+6}=\frac{9}{a+b+c+6}\)(1)
lại có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow a+b+c\le3\)
Vậy: \(\left(1\right)\ge\frac{9}{6+3}=1\)
Dấu = xảy ra khi a=b=c=1/căn 3
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
mà \(a,b,c\)dương nên \(x=y=z\Rightarrow a=b=c\).
\(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)=3^3=27\).
\(3a^2\)\(b^2\)\(c^2\)
\(=>ab+bc+ca=0\)
\(=>ab^2\)\(+bc^2\)\(+ca^2\)\(=0\)
\(TH1:ab+bc+ca=0\)
\(ab+bc=-ca\)
\(=>a+c=-\frac{ac}{b}\)
\(=>a+b=-\frac{ab}{c}\)
\(b+c=-\frac{bc}{a}\)
\(Thay\)\(A\)
\(=>A=-3\)
\(\left(ab-bc\right)^2\)\(+\left(bc-ca\right)^2\)\(+\left(ca-ab\right)^2\)\(=0\)
\(=>ab-bc=0\)
\(bc-ca=0\)
\(ca-ab=0\)
\(=>ab=bc=ca\)
\(=>a=b=c\)
\(Thay\)\(A\)
\(=>A=-24\)
\(=>A=\left(-3;-24\right)\)
Em làm sai mong anh thông cảm cho ạ
Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).
Áp dụng BĐT (*) vào bài toán, ta có:
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)
\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)
\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)
Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)
Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)
Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)
M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)
\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)
dấu "=" xảy ra khi và chỉ khi a=b=1