Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : ( so sánh )
\(\frac{a}{b};\frac{a+2019}{b+2019}\)(0<a<b)
=> \(\frac{a}{b}=1-\frac{b-a}{b};\)
\(\frac{a+2019}{b+2019}=1-\frac{\left(b+2019\right)-\left(a+2019\right)}{b+2019}=1-\frac{b-a}{b+2019}\)
ta thấy
\(\frac{a-b}{b}>\frac{a-b}{b+2019}\)
=> \(\frac{a}{b}< \frac{a+2019}{b+2019}\)
\(\frac{b-a}{b}>\frac{b-a}{b+2019}\)
\(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{2019^2}\)
\(< B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\)
Mà \(B=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)
b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)
Do 0< a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 ( a + c + m ) < a + b + c + d + m + n
\(\Rightarrow\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
\(\frac{a}{b}< \frac{a+2019}{b+2019}\Leftrightarrow a\left(b+2019\right)< b\left(a+2019\right)\)
\(\Leftrightarrow ab+2019a< ab+2019b\)
\(\Leftrightarrow2019a< 2019b\)
\(\Leftrightarrow a< b\) (luôn đúng theo giả thiết)
Vậy \(\frac{a}{b}< \frac{a+2019}{b+2019}\)