Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
tổng 3 số : 117
a/2 = b/3 = c/4 = a + b+c/2+3+4 = 117/9 = 13
=> a = 26
b = 39
c = 52
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
Gọi ba phần đó lần lượt là: \(x;y;z\) (\(x;y;z\) > 0)
Theo bài ra ta có: \(\dfrac{x}{\dfrac{1}{5}}\) = \(\dfrac{y}{\dfrac{1}{2}}\) ⇒ 5\(x\) = 2y ⇒ \(x\) = \(\dfrac{2}{5}\)y
\(\dfrac{y}{\dfrac{1}{3}}\) = \(\dfrac{z}{\dfrac{1}{7}}\) ⇒ 3y = 7z ⇒ z = \(\dfrac{3}{7}\)y
⇒ \(\dfrac{2}{5}\)y+ y+ \(\dfrac{3}{7}\)y = 640
⇒ y.( \(\dfrac{2}{5}\) + 1 + \(\dfrac{3}{7}\)) = 640
⇒y . \(\dfrac{64}{35}\) = 640
⇒ y = 640 : \(\dfrac{64}{35}\)
y = 350
\(x\) = 350 x \(\dfrac{2}{5}\) = 140
z = 350 x \(\dfrac{3}{7}\) = 150
a) Gọi ba phần của số 6200 là a, b, c. Từ giả thiết ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
\(\left\{{}\begin{matrix}\frac{a}{2}=620=>a=620.2=1240.\\\frac{b}{3}=620=>b=620.3=1860.\\\frac{c}{5}=620=>c=620.5=3100.\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ thuận với 2, 3, 5 là: 1240; 1860; 3100.
b) Gọi ba phần của số 6200 là x, y, z. Từ giả thiết ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và \(x+y+z=6200\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{2}}=6000=>x=6000.\frac{1}{2}=3000\\\frac{y}{\frac{1}{3}}=6000=>y=6000.\frac{1}{3}=2000\\\frac{z}{\frac{1}{5}}=6000=>z=6000.\frac{1}{5}=1200\end{matrix}\right.\)
Vậy ba phần của số 6200 tỉ lệ nghịch với 2, 3, 5 là 3000; 2000; 1200.
Chúc bạn học tốt!
Gọi 3 phần đó lần lượt là a, b, c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt tỉ lệ thuận với 2,3,5 nên ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) Mà a+b+c =310
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
Do đó:
\(\frac{a}{2}=620=>a=1240\)
\(\frac{b}{3}=620=>b=1860\)
\(\frac{c}{5}=620=>c=3100\)
Vậy ...
b,Gọi 3 phần đó lần lượt là a,b,c( 0<a,b,c<6200)
Vì 3 phần đó lần lượt TLN với 2,3,5 nên ta có
a/ \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)
Mà a+ b+c= 6200
Áp dụng tc ...
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
Do đó:
\(\frac{a}{\frac{1}{2}}=6000=>a=3000\)
\(\frac{b}{\frac{1}{3}}=6000=>b=2000\)
\(\frac{c}{\frac{1}{5}}=6200=>c=1240\)
Vậy...
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{552}{12}=46\)
=>a=138; b=184; c=230
b: Gọi ba số cần tìm lần lượt là a,b,c
Theo đề, ta có: 3a=5b=6c
=>a/10=b/6=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{315}{21}=15\)
=>a=150; b=90; c=75
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\) và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)
\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)
\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)
vậy 3 phần đó là:140, 105, 70
a) Tỉ lệ thuận
Phần 1: 248
Phần 2 : \(\dfrac{1240}{3}\)
Phần 3: 620
b) tỉ lệ nghịch thì ngược lại...