Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá trị của phần thứ nhất, thứ hai, thứ ba lần lượt là: \(x;y;z\)
Theo bài ra ta có: \(\dfrac{x}{3}\) = \(\dfrac{y}{2}\); \(\dfrac{x}{5}\) = \(\dfrac{z}{7}\)
y = \(\dfrac{2}{3}x\); z = \(\dfrac{7}{5}\)\(x\)
\(x+y+z\) = 184 ⇒ \(\dfrac{2}{3}x\) + \(x\) + \(\dfrac{7}{5}\)\(x\) = 184 ⇒ \(x\)(\(\dfrac{2}{3}\)+1+\(\dfrac{7}{5}\)) = 184
\(\dfrac{46}{15}\)\(x\) = 184 ⇒ \(x\) = 184 : \(\dfrac{46}{15}\) = 60;
⇒ y = 60 \(\times\) \(\dfrac{2}{3}\) = 40; z = 60 \(\times\) \(\dfrac{7}{5}\) = 84
Vậy ba số thỏa mãn đề bài lần lượt là:
Số thứ nhất 60, số thứ hai 40, số thứ ba 84
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
\(a+b+c=230\)
Và \(\hept{\begin{cases}a\cdot\frac{1}{3}=b\cdot\frac{1}{2}\\a\cdot\frac{1}{5}=c\cdot\frac{1}{7}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{a}{5}=\frac{c}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=\frac{b}{10}\\\frac{a}{15}=\frac{c}{21}\end{cases}}\Leftrightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\Rightarrow\frac{a+b+c}{15+10+21}=\frac{230}{46}=5\)
\(\Rightarrow\hept{\begin{cases}a=15\cdot5=75\\b=10\cdot5=50\\c=21\cdot5=105\end{cases}}\)
Chúc bạn học tốt :>