K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

Bài 13:

a) \(x^3-49x=0\)

\(\Leftrightarrow x\left(x^2-49\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=7\end{matrix}\right.\)

b) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

c) \(x^3+6x^2+9x=0\)

\(\Leftrightarrow x\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow x\left(x^2+2\cdot3\cdot x+3^2\right)=0\)

\(\Leftrightarrow x\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

d) \(\left(x+5\right)^2-16x^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-\left(4x\right)^2=0\)

\(\Leftrightarrow\left(x+5-4x\right)\left(x+5+4x\right)=0\)

\(\Leftrightarrow\left(5-3x\right)\left(5x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5-3x=0\\5x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=5\\5x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

18 tháng 11 2023

12:

a: \(4x^2+4x+1=0\)

=>\(\left(2x\right)^2+2\cdot2x\cdot1+1^2=0\)

=>\(\left(2x+1\right)^2=0\)

=>2x+1=0

=>2x=-1

=>\(x=-\dfrac{1}{2}\)

b: \(x^2-2x=-1\)

=>\(x^2-2x+1=0\)

=>\(x^2-2\cdot x\cdot1+1^2=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1

c: \(-x^2+10x=25\)

=>\(-x^2+10x-25=0\)

=>\(x^2-10x+25=0\)

=>\(x^2-2\cdot x\cdot5+5^2=0\)

=>\(\left(x-5\right)^2=0\)

=>x-5=0

=>x=5

d: \(12x-4x^2=9\)

=>\(-4x^2+12x-9=0\)

=>\(4x^2-12x+9=0\)

=>\(\left(2x\right)^2-2\cdot2x\cdot3+3^2=0\)

=>\(\left(2x-3\right)^2=0\)

=>2x-3=0

=>2x=3

=>x=3/2

26 tháng 8 2023

5:

a: \(-120x^5y^4=20x^5y^2\cdot\left(-6y^2\right)\)

b: \(60x^6y^2=20x^5y^2\cdot3x\)

c: \(-5x^{15}y^3=20x^5y^2\cdot\left(-\dfrac{1}{4}x^{10}y\right)\)

d: \(2x^{12}y^{10}=20x^5y^2\cdot\left(\dfrac{1}{10}x^7y^8\right)\)

NV
12 tháng 1

\(\dfrac{4x^3+4x^2}{x^2-1}=\dfrac{4x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x^2}{x-1}\)

\(\dfrac{b^2+b}{a+ab}=\dfrac{b\left(b+1\right)}{a\left(b+1\right)}=\dfrac{b}{a}\)

12 tháng 1

d) Để phân thức \(\dfrac{4x^3+4x^2}{x^2-1}\) có nghĩa thì: \(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

Khi đó: \(\dfrac{4x^3+4x^2}{x^2-1}=\dfrac{4x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x^2}{x-1}\)

e) Để phân thức \(\dfrac{b^2+b}{a+ab}\) có nghĩa thì: \(a+ab\ne0\Leftrightarrow a\ne-ab\)

Khi đó: \(\dfrac{b^2+b}{a+ab}=\dfrac{b\left(b+1\right)}{a\left(1+b\right)}=\dfrac{b}{a}\)

3 tháng 12 2023

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt: \(x^2+x+1=y\), khi đó biểu thức trở thành:

\(y\left(y+1\right)-12\)

\(=y^2+y-12\)

\(=y^2-3y+4y-12\)

\(=y\left(y-3\right)+4\left(y-3\right)\)

\(=\left(y-3\right)\left(y+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(=\left(x^2-x+2x-2\right)\left(x^2+x+5\right)\)

\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x^2+x+5\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)

b) \(\left(x^2+2x\right)^2+9x^2+18x+20\)

\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)

Đặt: \(x^2+2x=a\), khi đó biểu thức trở thành:

\(a^2+9a+20\)

\(=a^2+4a+5a+20\)

\(=a\left(a+4\right)+5\left(a+4\right)\)

\(=\left(a+4\right)\left(a+5\right)\)

\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

Đặt: \(x^2+10x+20=y\), khi đó biểu thức trở thành:

\(\left(y-4\right)\left(y+4\right)+16\)

\(=y^2-16+16\)

\(=y^2\)

\(=\left(x^2+10x+20\right)^2\)

$\text{#}Toru$

\(x^3-y^3-z^3=3xyz\)

=>\(\left(x-y\right)^3-z^3+3xy\left(x-y\right)-3xyz=0\)

=>\(\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]+3xy\left(x-y-z\right)=0\)

=>\(\left(x-y-z\right)\left[x^2-2xy+y^2+xz-zy+z^2+3xy\right]=0\)

=>\(\left(x-y-z\right)\left(x^2+y^2+z^2+xy+xz-yz\right)=0\)

=>\(\left(x-y-z\right)\left(2x^2+2y^2+2z^2+2xy+2xz-2yz\right)=0\)

=>\(\left(x-y-z\right)\left[\left(x^2+2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2+2xz+z^2\right)\right]=0\)

=>\(\left(x-y-z\right)\left[\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2\right]=0\)

=>\(\left[{}\begin{matrix}x-y-z=0\\\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=y+z\\y=z=-x\end{matrix}\right.\)

\(H=\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1-\dfrac{z}{x}\right)\)

\(=\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}\cdot\dfrac{x-z}{x}\)

TH1: x=y+z

=>\(H=\dfrac{y-x}{y}\cdot\dfrac{x}{z}\cdot\dfrac{x-z}{x}\)

\(=\dfrac{y}{x}\cdot\dfrac{z}{x}\cdot\dfrac{y-x}{y}=\dfrac{y}{x}\cdot\dfrac{z}{x}\cdot\dfrac{-z}{y}=-1\)

TH2: y=z=-x

=>y+x+z=0(vô lý vì x,y,z đều dương)

Vậy: H=-1

a: Xét ΔKAB và ΔKCD có

\(\widehat{KAB}=\widehat{KCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AKB}=\widehat{CKD}\)(hai góc đối đỉnh)

Do đó: ΔKAB đồng dạng với ΔKCD

=>\(\dfrac{KA}{KC}=\dfrac{KB}{KD}\)

=>\(KA\cdot KD=KB\cdot KC\)

b: Ta có: \(\dfrac{KA}{KC}=\dfrac{KB}{KD}\)

=>\(\dfrac{KC}{KA}=\dfrac{KD}{KB}\)

=>\(\dfrac{KC}{KA}+1=\dfrac{KD}{KB}+1\)

=>\(\dfrac{KC+KA}{KA}=\dfrac{KD+KB}{KB}\)

=>\(\dfrac{AC}{KA}=\dfrac{BD}{KB}\)

=>\(\dfrac{AK}{AC}=\dfrac{BK}{BD}\left(1\right)\)

Xét ΔADC có IK//DC

nên \(\dfrac{AK}{AC}=\dfrac{IK}{DC}\left(2\right)\)

Xét ΔBDC có KQ//DC

nên \(\dfrac{KQ}{DC}=\dfrac{BK}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra IK=KQ

40: Ta có: \(A=27x^3+8y^3-3x-2y\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)

29 tháng 11 2021

đâu?

29 tháng 11 2021

đâu

a: Xét ΔMQP có

H,I lần lượt là trung điểm của MQ,MP

=>HI là đường trung bình của ΔMQP

=>HI//QP và HI=QP/2

Xét ΔPMN có

I,K lần lượt là trung điểm của PM,PN

=>IK là đường trung bình của ΔPMN

=>IK//MN và \(IK=\dfrac{MN}{2}\)

b: H,I,K thẳng hàng 

mà HI//PQ và IK//MN

nên HI//MN

Ta có: HI//MN

HI//PQ

Do đó: MN//PQ