Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A x C y z
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
A x y y y B z z C
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
\(a)d\perp m,ab\perp m\Leftrightarrow d//ab\)( từ vuông góc đến song song)
\(b)\widehat{ABA}=60^0\)( câu này bạn tự tính )
\(c)\widehat{HBA}=\frac{\widehat{ABa}}{2}=\frac{120^0}{2}=60^0\)và \(\widehat{HAB}=60^0\)
\(\Rightarrow\widehat{AHB}=60^0\)
\(d)\)Vì Ba là tia đối của BN nên \(\widehat{ABA},\widehat{CBN}\)là 2 góc đối nhau nên 2 tia phân giác của nó đối nhau hay BH và Bt đối nhau
ài 1 a)như hình vẽ ta thấy góc A= góc B=90° => a//b( vì có 2 góc so le trong bằng nhau) b) vì a//b nên D1=E2=60°( hai góc đồng vị) Mà E1+E2=180°=> E1=180-60=130°
Giải:
a) Ta có: AB // CD, CD _|_ a
\(\Rightarrow\) AB _|_ a
\(\Rightarrow\widehat{A}=90^o\)
b) Vì AB // CD nên:
\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )
\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )
Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )
Vậy a) \(\widehat{A}=90^o\)
b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)
Hình vẽ có rồi nha!!!!!!
a) Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)
mà \(\widehat{D} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{A} = 90^0\)
b) Ta có:
\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)
\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)
\(\widehat{C2} = 119^0\)
Vì AB // CD (gt)
\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)
\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)
Cho mik lm lại:
a) Ta có: \(\frac{A}{1}\)=\(\frac{B}{3}\)=\(\frac{C}{5}\)=\(\frac{A+B+C}{1+3+5}\)=\(\frac{180}{9}\)= 20
Vậy A=1.20 = 20 độ
B=3.20=60 độ
C=5.20=100 độ
b) Số đo góc ngoài của B là:180-60=120 đọ
Số đo góc CBD là: 120:2=60 độ
số đo góc BCD là: 180-100=80 độ
=>Số đo góc AIB là: 180-60-80=40 đọ
Vậy góc ADB bằng 40 độ
Mik ko giỏi hình cho lắm
Kẻ đường thẳng a qua E // AB và CD
=> góc ABE = góc BEa = 400
góc CDE = góc DEa = 300
mà góc BEa + góc DEa = BED
=> góc ABE + góc CDE = góc BED
=> 400 + 300 = 700
vậy góc BED = 700
kẻ tia Ex // với AB
AB //CD
AB // Ex
=> AB // Ex//CD
ta có :
góc ABE = góc BEx=40độ (so le trong)
góc xED=góc EDC=30độ (so le trong)
mà góc BED=góc Bex+góc xED
=40độ+30độ
=70độ
vậy góc BED=70độ
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được
Ta có: d' // d''
=> góc C1 = góc E1 = 600 (slt)
Ta có: d' // d''
=> góc D1 = góc G2 = 1100 (đồng vị)
Ta có: góc G2 + góc G3 = 1800 (kề bù)
hay 1100 + góc G3 = 1800
=> góc G3 = 1800 - 1100 = 700
Ta có: góc D1 = góc D4 = 1100 (đối đỉnh)
Ta có: d//d''
=> góc E1 = góc A5 = 600 (đồng vị)
Ta có: d//d''
=> góc G3 = góc B6 = 700 (đồng vị).
Vì d'//d'' => ^E1=^C1=60 độ (2 góc so le trong)
Vì d'//d'' => ^G2=^D1=110 độ (2 góc đồng vị)
Ta có: ^D1=^D4 =110 độ (đối đỉnh)
Mà d'//d'' => ^G3=70 độ (^G3 và ^D4 là 2 góc trong cùng phía)
Vì d//d' => ^A5=^C1=60 độ (2 góc so le ngoài)
Vì d//d'' => ^B6=^G3=70 độ (2 góc đồng vị)
Ta có \(\widehat{aIK}=\widehat{IKb'}\Rightarrow aa'//bb'\)
=> \(\widehat{a'Ic}=\widehat{bKc'}=\widehat{aIK}=28^{\text{o}}\)
Lại có \(\widehat{a'IK}=180^{\text{o}}-\widehat{aIK}=180^{\text{o}}-28^{\text{o}}=152^{\text{o}}=\widehat{aIC}=\widehat{c'Kb'}\)
Vì IKb và IKb' là 2 góc kề bù \(\Rightarrow\)IKb = 180o - 28o = 152o
Vì aa' // bb' , IKb và KIa' là 2 góc so le trong bằng nhau \(\Rightarrow\)KIa' = 152o
Vì cIa và KIa' là 2 góc đối đỉnh \(\Rightarrow\)cIa = 152o
Vì cIa' và KIa là 2 góc đối đỉnh \(\Rightarrow\)cIa' = 28o
Vì IKb và b'Kc' là 2 góc đối đỉnh \(\Rightarrow\)b'Kc' = 152o
Vì IKb' và bKc' là 2 góc đối đỉnh \(\Rightarrow\)bKc' = 28o