Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có: AB // CD, CD _|_ a
\(\Rightarrow\) AB _|_ a
\(\Rightarrow\widehat{A}=90^o\)
b) Vì AB // CD nên:
\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )
\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )
Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )
Vậy a) \(\widehat{A}=90^o\)
b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)
Hình vẽ có rồi nha!!!!!!
a) Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)
mà \(\widehat{D} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{A} = 90^0\)
b) Ta có:
\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)
\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)
\(\widehat{C2} = 119^0\)
Vì AB // CD (gt)
\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)
\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)
\(a)d\perp m,ab\perp m\Leftrightarrow d//ab\)( từ vuông góc đến song song)
\(b)\widehat{ABA}=60^0\)( câu này bạn tự tính )
\(c)\widehat{HBA}=\frac{\widehat{ABa}}{2}=\frac{120^0}{2}=60^0\)và \(\widehat{HAB}=60^0\)
\(\Rightarrow\widehat{AHB}=60^0\)
\(d)\)Vì Ba là tia đối của BN nên \(\widehat{ABA},\widehat{CBN}\)là 2 góc đối nhau nên 2 tia phân giác của nó đối nhau hay BH và Bt đối nhau
ài 1 a)như hình vẽ ta thấy góc A= góc B=90° => a//b( vì có 2 góc so le trong bằng nhau) b) vì a//b nên D1=E2=60°( hai góc đồng vị) Mà E1+E2=180°=> E1=180-60=130°
a) ΔABC có:
\(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 180o hay 100o + \(\widehat{B}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{B}\) + \(\widehat{C}\) = 180o - 100o = 80o
Ta có: \(\widehat{B}\) + \(\widehat{C}\) = 80o(cm trên) ; \(\widehat{B}\) - \(\widehat{C}\) = 50o (gt)
\(\Rightarrow\) \(\widehat{B}\) = (80o + 50o ) : 2 = 65o
\(\widehat{C}\) = (80o - 50o) : 2 = 15o
b) ΔABC có:
\(\widehat{B}\) + \(\widehat{A}\) + \(\widehat{C}\) = 180o hay 80o + \(\widehat{A}\) + \(\widehat{C}\) = 180o
\(\Rightarrow\) \(\widehat{A}\) + \(\widehat{C}\) = 180o - 80o = 100o
Ta có: 3 . \(\widehat{A}\) = 2 . \(\widehat{C}\) => \(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\) = \(\frac{\widehat{A}+\widehat{C}}{2+3}\) = \(\frac{100}{5}\) = 20
\(\Rightarrow\) \(\begin{cases}\widehat{A}=40^o\\\widehat{C}=60^o\end{cases}\)
Xem hình vẽ. Có thể tính bằng nhiều cách, chẳng hạn:
+Vì d’ //d’’ có: \(\widehat{E}_1\) và góc 600 là hai góc so le trong nên \(\widehat{E}_1\)= 600
+Vì d’ // d’’ có: \(\widehat{G}_2\)và góc 1100 là hai góc đồng vị nên \(\widehat{G_2}\) = 1100
+ \(\widehat{G}_2\)+\(\widehat{G}_3\)=\(180^0\) (hai góc kề bù)
Nên \(\widehat{G_3}=180^0-\widehat{G}_2=180^0-110^0=70^0\)
+) \(\widehat{D}_4\)1100 (vì là hai góc đối đỉnh)
+) \(\widehat{A}_5\) = \(\widehat{A}_1\) (Hai góc đối đỉnh)
Mà \(\widehat{A}_1\)= 600 (vì là hai góc đồng vị)
Nên \(\widehat{A}_5\) = 600 .
+ \(\widehat{B}_6\) = \(\widehat{B}_2\)(vì là hai góc đối đỉnh)
Mà \(\widehat{B}_2\) + 1100 = 1800 (hai góc trong cùng phía)
Nên \(\widehat{B}_2\) = 1800 - 1100 = 700.
Do đó: \(\widehat{B}_6\) = 700
a) Năm cặp đường thẳng vuông góc là:
d3 ⊥ d4; d3 ⊥ d5; d3 ⊥ d7; d1 ⊥ d8; d1 ⊥ d2
b) Bốn cặp đường thẳng song song là: d4//d5; d5//d7; d4//d7; d8//d2
b) Vì AH vuông BC nên góc AHC = 90 độ
Ta có góc HAC + C = 90 độ
=> HAC + 30 = 90
=> HAC = 90 - 30
= 60
Do AD là tia pg của BAC nên
BAD = DAC = HAC: 2 = 30 độ
Ta có HAD + DAC = HAC
=> HAD + 30 = 60
=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ
Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!
Tự vẽ hình
a) Adụng tc tổng 3 góc của 1 tg ta có:
A + B + C = 180 độ
=> 90+60+C = 180
=> C = 30
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được
Ta có: d' // d''
=> góc C1 = góc E1 = 600 (slt)
Ta có: d' // d''
=> góc D1 = góc G2 = 1100 (đồng vị)
Ta có: góc G2 + góc G3 = 1800 (kề bù)
hay 1100 + góc G3 = 1800
=> góc G3 = 1800 - 1100 = 700
Ta có: góc D1 = góc D4 = 1100 (đối đỉnh)
Ta có: d//d''
=> góc E1 = góc A5 = 600 (đồng vị)
Ta có: d//d''
=> góc G3 = góc B6 = 700 (đồng vị).
Vì d'//d'' => ^E1=^C1=60 độ (2 góc so le trong)
Vì d'//d'' => ^G2=^D1=110 độ (2 góc đồng vị)
Ta có: ^D1=^D4 =110 độ (đối đỉnh)
Mà d'//d'' => ^G3=70 độ (^G3 và ^D4 là 2 góc trong cùng phía)
Vì d//d' => ^A5=^C1=60 độ (2 góc so le ngoài)
Vì d//d'' => ^B6=^G3=70 độ (2 góc đồng vị)